Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import json | |
import os | |
from argparse import ArgumentParser | |
from mmcv import track_iter_progress | |
from PIL import Image | |
from xtcocotools.coco import COCO | |
from mmpose.apis import inference_top_down_pose_model, init_pose_model | |
def main(): | |
"""Visualize the demo images. | |
pose_keypoints require the json_file containing boxes. | |
""" | |
parser = ArgumentParser() | |
parser.add_argument('pose_config', help='Config file for detection') | |
parser.add_argument('pose_checkpoint', help='Checkpoint file') | |
parser.add_argument('--img-root', type=str, default='', help='Image root') | |
parser.add_argument( | |
'--json-file', | |
type=str, | |
default='', | |
help='Json file containing image person bboxes in COCO format.') | |
parser.add_argument( | |
'--out-json-file', | |
type=str, | |
default='', | |
help='Output json contains pseudolabeled annotation') | |
parser.add_argument( | |
'--show', | |
action='store_true', | |
default=False, | |
help='whether to show img') | |
parser.add_argument( | |
'--device', default='cuda:0', help='Device used for inference') | |
parser.add_argument( | |
'--kpt-thr', type=float, default=0.3, help='Keypoint score threshold') | |
args = parser.parse_args() | |
coco = COCO(args.json_file) | |
# build the pose model from a config file and a checkpoint file | |
pose_model = init_pose_model( | |
args.pose_config, args.pose_checkpoint, device=args.device.lower()) | |
dataset = pose_model.cfg.data['test']['type'] | |
img_keys = list(coco.imgs.keys()) | |
# optional | |
return_heatmap = False | |
# e.g. use ('backbone', ) to return backbone feature | |
output_layer_names = None | |
categories = [{'id': 1, 'name': 'person'}] | |
img_anno_dict = {'images': [], 'annotations': [], 'categories': categories} | |
# process each image | |
ann_uniq_id = int(0) | |
for i in track_iter_progress(range(len(img_keys))): | |
# get bounding box annotations | |
image_id = img_keys[i] | |
image = coco.loadImgs(image_id)[0] | |
image_name = os.path.join(args.img_root, image['file_name']) | |
width, height = Image.open(image_name).size | |
ann_ids = coco.getAnnIds(image_id) | |
# make person bounding boxes | |
person_results = [] | |
for ann_id in ann_ids: | |
person = {} | |
ann = coco.anns[ann_id] | |
# bbox format is 'xywh' | |
person['bbox'] = ann['bbox'] | |
person_results.append(person) | |
pose_results, returned_outputs = inference_top_down_pose_model( | |
pose_model, | |
image_name, | |
person_results, | |
bbox_thr=None, | |
format='xywh', | |
dataset=dataset, | |
return_heatmap=return_heatmap, | |
outputs=output_layer_names) | |
# add output of model and bboxes to dict | |
for indx, i in enumerate(pose_results): | |
pose_results[indx]['keypoints'][ | |
pose_results[indx]['keypoints'][:, 2] < args.kpt_thr, :3] = 0 | |
pose_results[indx]['keypoints'][ | |
pose_results[indx]['keypoints'][:, 2] >= args.kpt_thr, 2] = 2 | |
x = int(pose_results[indx]['bbox'][0]) | |
y = int(pose_results[indx]['bbox'][1]) | |
w = int(pose_results[indx]['bbox'][2] - | |
pose_results[indx]['bbox'][0]) | |
h = int(pose_results[indx]['bbox'][3] - | |
pose_results[indx]['bbox'][1]) | |
bbox = [x, y, w, h] | |
area = round((w * h), 0) | |
images = { | |
'file_name': image_name.split('/')[-1], | |
'height': height, | |
'width': width, | |
'id': int(image_id) | |
} | |
annotations = { | |
'keypoints': [ | |
int(i) for i in pose_results[indx]['keypoints'].reshape( | |
-1).tolist() | |
], | |
'num_keypoints': | |
len(pose_results[indx]['keypoints']), | |
'area': | |
area, | |
'iscrowd': | |
0, | |
'image_id': | |
int(image_id), | |
'bbox': | |
bbox, | |
'category_id': | |
1, | |
'id': | |
ann_uniq_id, | |
} | |
img_anno_dict['annotations'].append(annotations) | |
ann_uniq_id += 1 | |
img_anno_dict['images'].append(images) | |
# create json | |
with open(args.out_json_file, 'w') as outfile: | |
json.dump(img_anno_dict, outfile, indent=2) | |
if __name__ == '__main__': | |
main() | |