# Copyright (c) OpenMMLab. All rights reserved. import copy import pytest from mmcv import Config from numpy.testing import assert_almost_equal from mmpose.datasets import DATASETS from tests.utils.data_utils import convert_db_to_output def test_animal_horse10_dataset(): dataset = 'AnimalHorse10Dataset' dataset_class = DATASETS.get(dataset) dataset_info = Config.fromfile( 'configs/_base_/datasets/horse10.py').dataset_info channel_cfg = dict( num_output_channels=22, dataset_joints=22, dataset_channel=[ [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21 ], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21 ]) data_cfg = dict( image_size=[256, 256], heatmap_size=[64, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel']) # Test data_cfg_copy = copy.deepcopy(data_cfg) _ = dataset_class( ann_file='tests/data/horse10/test_horse10.json', img_prefix='tests/data/horse10/', data_cfg=data_cfg_copy, dataset_info=dataset_info, pipeline=[], test_mode=True) custom_dataset = dataset_class( ann_file='tests/data/horse10/test_horse10.json', img_prefix='tests/data/horse10/', data_cfg=data_cfg_copy, dataset_info=dataset_info, pipeline=[], test_mode=False) assert custom_dataset.dataset_name == 'horse10' assert custom_dataset.test_mode is False assert custom_dataset.num_images == 3 _ = custom_dataset[0] results = convert_db_to_output(custom_dataset.db) infos = custom_dataset.evaluate(results, metric=['PCK']) assert_almost_equal(infos['PCK'], 1.0) with pytest.raises(KeyError): infos = custom_dataset.evaluate(results, metric='mAP') def test_animal_fly_dataset(): dataset = 'AnimalFlyDataset' dataset_class = DATASETS.get(dataset) dataset_info = Config.fromfile( 'configs/_base_/datasets/fly.py').dataset_info channel_cfg = dict( num_output_channels=32, dataset_joints=32, dataset_channel=[ [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 ], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 ]) data_cfg = dict( image_size=[192, 192], heatmap_size=[48, 48], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel']) # Test data_cfg_copy = copy.deepcopy(data_cfg) _ = dataset_class( ann_file='tests/data/fly/test_fly.json', img_prefix='tests/data/fly/', data_cfg=data_cfg_copy, dataset_info=dataset_info, pipeline=[], test_mode=True) custom_dataset = dataset_class( ann_file='tests/data/fly/test_fly.json', img_prefix='tests/data/fly/', data_cfg=data_cfg_copy, dataset_info=dataset_info, pipeline=[], test_mode=False) assert custom_dataset.dataset_name == 'fly' assert custom_dataset.test_mode is False assert custom_dataset.num_images == 2 _ = custom_dataset[0] results = convert_db_to_output(custom_dataset.db) infos = custom_dataset.evaluate(results, metric=['PCK']) assert_almost_equal(infos['PCK'], 1.0) with pytest.raises(KeyError): infos = custom_dataset.evaluate(results, metric='mAP') def test_animal_locust_dataset(): dataset = 'AnimalLocustDataset' dataset_class = DATASETS.get(dataset) dataset_info = Config.fromfile( 'configs/_base_/datasets/locust.py').dataset_info channel_cfg = dict( num_output_channels=35, dataset_joints=35, dataset_channel=[ [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 ], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 ]) data_cfg = dict( image_size=[160, 160], heatmap_size=[40, 40], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel']) # Test data_cfg_copy = copy.deepcopy(data_cfg) _ = dataset_class( ann_file='tests/data/locust/test_locust.json', img_prefix='tests/data/locust/', data_cfg=data_cfg_copy, dataset_info=dataset_info, pipeline=[], test_mode=True) custom_dataset = dataset_class( ann_file='tests/data/locust/test_locust.json', img_prefix='tests/data/locust/', data_cfg=data_cfg_copy, dataset_info=dataset_info, pipeline=[], test_mode=False) assert custom_dataset.dataset_name == 'locust' assert custom_dataset.test_mode is False assert custom_dataset.num_images == 2 _ = custom_dataset[0] results = convert_db_to_output(custom_dataset.db) infos = custom_dataset.evaluate(results, metric=['PCK']) assert_almost_equal(infos['PCK'], 1.0) with pytest.raises(KeyError): infos = custom_dataset.evaluate(results, metric='mAP') def test_animal_zebra_dataset(): dataset = 'AnimalZebraDataset' dataset_class = DATASETS.get(dataset) dataset_info = Config.fromfile( 'configs/_base_/datasets/zebra.py').dataset_info channel_cfg = dict( num_output_channels=9, dataset_joints=9, dataset_channel=[ [0, 1, 2, 3, 4, 5, 6, 7, 8], ], inference_channel=[0, 1, 2, 3, 4, 5, 6, 7, 8]) data_cfg = dict( image_size=[160, 160], heatmap_size=[40, 40], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel']) # Test data_cfg_copy = copy.deepcopy(data_cfg) _ = dataset_class( ann_file='tests/data/zebra/test_zebra.json', img_prefix='tests/data/zebra/', data_cfg=data_cfg_copy, dataset_info=dataset_info, pipeline=[], test_mode=True) custom_dataset = dataset_class( ann_file='tests/data/zebra/test_zebra.json', img_prefix='tests/data/zebra/', data_cfg=data_cfg_copy, dataset_info=dataset_info, pipeline=[], test_mode=False) assert custom_dataset.dataset_name == 'zebra' assert custom_dataset.test_mode is False assert custom_dataset.num_images == 2 _ = custom_dataset[0] results = convert_db_to_output(custom_dataset.db) infos = custom_dataset.evaluate(results, metric=['PCK']) assert_almost_equal(infos['PCK'], 1.0) with pytest.raises(KeyError): infos = custom_dataset.evaluate(results, metric='mAP') def test_animal_ATRW_dataset(): dataset = 'AnimalATRWDataset' dataset_class = DATASETS.get(dataset) dataset_info = Config.fromfile( 'configs/_base_/datasets/atrw.py').dataset_info channel_cfg = dict( num_output_channels=15, dataset_joints=15, dataset_channel=[ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], ], inference_channel=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) data_cfg = dict( image_size=[256, 256], heatmap_size=[64, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel'], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=True, det_bbox_thr=0.0, bbox_file='', ) # Test data_cfg_copy = copy.deepcopy(data_cfg) _ = dataset_class( ann_file='tests/data/atrw/test_atrw.json', img_prefix='tests/data/atrw/', data_cfg=data_cfg_copy, dataset_info=dataset_info, pipeline=[], test_mode=True) custom_dataset = dataset_class( ann_file='tests/data/atrw/test_atrw.json', img_prefix='tests/data/atrw/', data_cfg=data_cfg_copy, dataset_info=dataset_info, pipeline=[], test_mode=False) assert custom_dataset.dataset_name == 'atrw' assert custom_dataset.test_mode is False assert custom_dataset.num_images == 2 _ = custom_dataset[0] results = convert_db_to_output(custom_dataset.db) infos = custom_dataset.evaluate(results, metric='mAP') assert_almost_equal(infos['AP'], 1.0) with pytest.raises(KeyError): infos = custom_dataset.evaluate(results, metric=['PCK']) def test_animal_Macaque_dataset(): dataset = 'AnimalMacaqueDataset' dataset_class = DATASETS.get(dataset) dataset_info = Config.fromfile( 'configs/_base_/datasets/macaque.py').dataset_info channel_cfg = dict( num_output_channels=17, dataset_joints=17, dataset_channel=[ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]) data_cfg = dict( image_size=[192, 256], heatmap_size=[48, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel'], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=True, det_bbox_thr=0.0, bbox_file='', ) # Test data_cfg_copy = copy.deepcopy(data_cfg) _ = dataset_class( ann_file='tests/data/macaque/test_macaque.json', img_prefix='tests/data/macaque/', data_cfg=data_cfg_copy, dataset_info=dataset_info, pipeline=[], test_mode=True) custom_dataset = dataset_class( ann_file='tests/data/macaque/test_macaque.json', img_prefix='tests/data/macaque/', data_cfg=data_cfg_copy, dataset_info=dataset_info, pipeline=[], test_mode=False) assert custom_dataset.dataset_name == 'macaque' assert custom_dataset.test_mode is False assert custom_dataset.num_images == 2 _ = custom_dataset[0] results = convert_db_to_output(custom_dataset.db) infos = custom_dataset.evaluate(results, metric='mAP') assert_almost_equal(infos['AP'], 1.0) with pytest.raises(KeyError): infos = custom_dataset.evaluate(results, metric=['PCK']) def test_animalpose_dataset(): dataset = 'AnimalPoseDataset' dataset_class = DATASETS.get(dataset) dataset_info = Config.fromfile( 'configs/_base_/datasets/animalpose.py').dataset_info channel_cfg = dict( num_output_channels=20, dataset_joints=20, dataset_channel=[ [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 ], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 ]) data_cfg = dict( image_size=[256, 256], heatmap_size=[64, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel'], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=True, det_bbox_thr=0.0, bbox_file='', ) # Test data_cfg_copy = copy.deepcopy(data_cfg) _ = dataset_class( ann_file='tests/data/animalpose/test_animalpose.json', img_prefix='tests/data/animalpose/', data_cfg=data_cfg_copy, dataset_info=dataset_info, pipeline=[], test_mode=True) custom_dataset = dataset_class( ann_file='tests/data/animalpose/test_animalpose.json', img_prefix='tests/data/animalpose/', data_cfg=data_cfg_copy, dataset_info=dataset_info, pipeline=[], test_mode=False) assert custom_dataset.dataset_name == 'animalpose' assert custom_dataset.test_mode is False assert custom_dataset.num_images == 2 _ = custom_dataset[0] results = convert_db_to_output(custom_dataset.db) infos = custom_dataset.evaluate(results, metric='mAP') assert_almost_equal(infos['AP'], 1.0) with pytest.raises(KeyError): infos = custom_dataset.evaluate(results, metric=['PCK']) def test_ap10k_dataset(): dataset = 'AnimalAP10KDataset' dataset_class = DATASETS.get(dataset) dataset_info = Config.fromfile( 'configs/_base_/datasets/ap10k.py').dataset_info channel_cfg = dict( num_output_channels=17, dataset_joints=17, dataset_channel=[ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]) data_cfg = dict( image_size=[256, 256], heatmap_size=[64, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel'], soft_nms=False, nms_thr=1.0, oks_thr=0.9, vis_thr=0.2, use_gt_bbox=True, det_bbox_thr=0.0, bbox_file='', ) # Test data_cfg_copy = copy.deepcopy(data_cfg) _ = dataset_class( ann_file='tests/data/ap10k/test_ap10k.json', img_prefix='tests/data/ap10k/', data_cfg=data_cfg_copy, dataset_info=dataset_info, pipeline=[], test_mode=True) custom_dataset = dataset_class( ann_file='tests/data/ap10k/test_ap10k.json', img_prefix='tests/data/ap10k/', data_cfg=data_cfg_copy, dataset_info=dataset_info, pipeline=[], test_mode=False) assert custom_dataset.dataset_name == 'ap10k' assert custom_dataset.test_mode is False assert custom_dataset.num_images == 2 _ = custom_dataset[0] results = convert_db_to_output(custom_dataset.db) for output in results: # as there is only one box in each image for test output['bbox_ids'] = [0 for _ in range(len(output['bbox_ids']))] infos = custom_dataset.evaluate(results, metric='mAP') assert_almost_equal(infos['AP'], 1.0) with pytest.raises(KeyError): infos = custom_dataset.evaluate(results, metric=['PCK'])