# Copyright (c) OpenMMLab. All rights reserved. import copy import pytest from mmcv import Config from numpy.testing import assert_almost_equal from mmpose.datasets import DATASETS from tests.utils.data_utils import convert_db_to_output def test_OneHand10K_dataset(): dataset = 'OneHand10KDataset' dataset_info = Config.fromfile( 'configs/_base_/datasets/onehand10k.py').dataset_info dataset_class = DATASETS.get(dataset) channel_cfg = dict( num_output_channels=21, dataset_joints=21, dataset_channel=[ [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ]) data_cfg = dict( image_size=[256, 256], heatmap_size=[64, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel']) # Test data_cfg_copy = copy.deepcopy(data_cfg) _ = dataset_class( ann_file='tests/data/onehand10k/test_onehand10k.json', img_prefix='tests/data/onehand10k/', data_cfg=data_cfg_copy, pipeline=[], dataset_info=dataset_info, test_mode=True) custom_dataset = dataset_class( ann_file='tests/data/onehand10k/test_onehand10k.json', img_prefix='tests/data/onehand10k/', data_cfg=data_cfg_copy, pipeline=[], dataset_info=dataset_info, test_mode=False) assert custom_dataset.dataset_name == 'onehand10k' assert custom_dataset.test_mode is False assert custom_dataset.num_images == 4 _ = custom_dataset[0] results = convert_db_to_output(custom_dataset.db) infos = custom_dataset.evaluate(results, metric=['PCK', 'EPE', 'AUC']) assert_almost_equal(infos['PCK'], 1.0) assert_almost_equal(infos['AUC'], 0.95) assert_almost_equal(infos['EPE'], 0.0) with pytest.raises(KeyError): infos = custom_dataset.evaluate(results, metric='mAP') def test_hand_coco_wholebody_dataset(): dataset = 'HandCocoWholeBodyDataset' dataset_info = Config.fromfile( 'configs/_base_/datasets/coco_wholebody_hand.py').dataset_info dataset_class = DATASETS.get(dataset) channel_cfg = dict( num_output_channels=21, dataset_joints=21, dataset_channel=[ [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ]) data_cfg = dict( image_size=[256, 256], heatmap_size=[64, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel']) # Test data_cfg_copy = copy.deepcopy(data_cfg) _ = dataset_class( ann_file='tests/data/coco/test_coco_wholebody.json', img_prefix='tests/data/coco/', data_cfg=data_cfg_copy, pipeline=[], dataset_info=dataset_info, test_mode=True) custom_dataset = dataset_class( ann_file='tests/data/coco/test_coco_wholebody.json', img_prefix='tests/data/coco/', data_cfg=data_cfg_copy, pipeline=[], dataset_info=dataset_info, test_mode=False) assert custom_dataset.test_mode is False assert custom_dataset.num_images == 4 _ = custom_dataset[0] results = convert_db_to_output(custom_dataset.db) infos = custom_dataset.evaluate(results, metric=['PCK', 'EPE', 'AUC']) assert_almost_equal(infos['PCK'], 1.0) assert_almost_equal(infos['AUC'], 0.95) assert_almost_equal(infos['EPE'], 0.0) with pytest.raises(KeyError): infos = custom_dataset.evaluate(results, metric='mAP') def test_FreiHand2D_dataset(): dataset = 'FreiHandDataset' dataset_info = Config.fromfile( 'configs/_base_/datasets/freihand2d.py').dataset_info dataset_class = DATASETS.get(dataset) channel_cfg = dict( num_output_channels=21, dataset_joints=21, dataset_channel=[ [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ]) data_cfg = dict( image_size=[224, 224], heatmap_size=[56, 56], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel']) # Test data_cfg_copy = copy.deepcopy(data_cfg) _ = dataset_class( ann_file='tests/data/freihand/test_freihand.json', img_prefix='tests/data/freihand/', data_cfg=data_cfg_copy, pipeline=[], dataset_info=dataset_info, test_mode=True) custom_dataset = dataset_class( ann_file='tests/data/freihand/test_freihand.json', img_prefix='tests/data/freihand/', data_cfg=data_cfg_copy, pipeline=[], dataset_info=dataset_info, test_mode=False) assert custom_dataset.dataset_name == 'freihand' assert custom_dataset.test_mode is False assert custom_dataset.num_images == 8 _ = custom_dataset[0] results = convert_db_to_output(custom_dataset.db) infos = custom_dataset.evaluate(results, metric=['PCK', 'EPE', 'AUC']) assert_almost_equal(infos['PCK'], 1.0) assert_almost_equal(infos['AUC'], 0.95) assert_almost_equal(infos['EPE'], 0.0) with pytest.raises(KeyError): infos = custom_dataset.evaluate(results, metric='mAP') def test_RHD2D_dataset(): dataset = 'Rhd2DDataset' dataset_info = Config.fromfile( 'configs/_base_/datasets/rhd2d.py').dataset_info dataset_class = DATASETS.get(dataset) channel_cfg = dict( num_output_channels=21, dataset_joints=21, dataset_channel=[ [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ]) data_cfg = dict( image_size=[256, 256], heatmap_size=[64, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel']) # Test data_cfg_copy = copy.deepcopy(data_cfg) _ = dataset_class( ann_file='tests/data/rhd/test_rhd.json', img_prefix='tests/data/rhd/', data_cfg=data_cfg_copy, pipeline=[], dataset_info=dataset_info, test_mode=True) custom_dataset = dataset_class( ann_file='tests/data/rhd/test_rhd.json', img_prefix='tests/data/rhd/', data_cfg=data_cfg_copy, pipeline=[], dataset_info=dataset_info, test_mode=False) assert custom_dataset.dataset_name == 'rhd2d' assert custom_dataset.test_mode is False assert custom_dataset.num_images == 3 _ = custom_dataset[0] results = convert_db_to_output(custom_dataset.db) infos = custom_dataset.evaluate(results, metric=['PCK', 'EPE', 'AUC']) assert_almost_equal(infos['PCK'], 1.0) assert_almost_equal(infos['AUC'], 0.95) assert_almost_equal(infos['EPE'], 0.0) with pytest.raises(KeyError): infos = custom_dataset.evaluate(results, metric='mAP') def test_Panoptic2D_dataset(): dataset = 'PanopticDataset' dataset_info = Config.fromfile( 'configs/_base_/datasets/panoptic_hand2d.py').dataset_info dataset_class = DATASETS.get(dataset) channel_cfg = dict( num_output_channels=21, dataset_joints=21, dataset_channel=[ [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ]) data_cfg = dict( image_size=[256, 256], heatmap_size=[64, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel']) # Test data_cfg_copy = copy.deepcopy(data_cfg) _ = dataset_class( ann_file='tests/data/panoptic/test_panoptic.json', img_prefix='tests/data/panoptic/', data_cfg=data_cfg_copy, pipeline=[], dataset_info=dataset_info, test_mode=True) custom_dataset = dataset_class( ann_file='tests/data/panoptic/test_panoptic.json', img_prefix='tests/data/panoptic/', data_cfg=data_cfg_copy, pipeline=[], dataset_info=dataset_info, test_mode=False) assert custom_dataset.dataset_name == 'panoptic_hand2d' assert custom_dataset.test_mode is False assert custom_dataset.num_images == 4 _ = custom_dataset[0] results = convert_db_to_output(custom_dataset.db) infos = custom_dataset.evaluate(results, metric=['PCKh', 'EPE', 'AUC']) assert_almost_equal(infos['PCKh'], 1.0) assert_almost_equal(infos['AUC'], 0.95) assert_almost_equal(infos['EPE'], 0.0) with pytest.raises(KeyError): infos = custom_dataset.evaluate(results, metric='mAP') def test_InterHand2D_dataset(): dataset = 'InterHand2DDataset' dataset_info = Config.fromfile( 'configs/_base_/datasets/interhand2d.py').dataset_info dataset_class = DATASETS.get(dataset) channel_cfg = dict( num_output_channels=21, dataset_joints=21, dataset_channel=[ [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 ]) data_cfg = dict( image_size=[256, 256], heatmap_size=[64, 64], num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel']) # Test data_cfg_copy = copy.deepcopy(data_cfg) _ = dataset_class( ann_file='tests/data/interhand2.6m/test_interhand2.6m_data.json', camera_file='tests/data/interhand2.6m/test_interhand2.6m_camera.json', joint_file='tests/data/interhand2.6m/test_interhand2.6m_joint_3d.json', img_prefix='tests/data/interhand2.6m/', data_cfg=data_cfg_copy, pipeline=[], dataset_info=dataset_info, test_mode=True) custom_dataset = dataset_class( ann_file='tests/data/interhand2.6m/test_interhand2.6m_data.json', camera_file='tests/data/interhand2.6m/test_interhand2.6m_camera.json', joint_file='tests/data/interhand2.6m/test_interhand2.6m_joint_3d.json', img_prefix='tests/data/interhand2.6m/', data_cfg=data_cfg_copy, pipeline=[], dataset_info=dataset_info, test_mode=False) assert custom_dataset.dataset_name == 'interhand2d' assert custom_dataset.test_mode is False assert custom_dataset.num_images == 4 assert len(custom_dataset.db) == 6 _ = custom_dataset[0] results = convert_db_to_output(custom_dataset.db) infos = custom_dataset.evaluate(results, metric=['PCK', 'EPE', 'AUC']) print(infos, flush=True) assert_almost_equal(infos['PCK'], 1.0) assert_almost_equal(infos['AUC'], 0.95) assert_almost_equal(infos['EPE'], 0.0) with pytest.raises(KeyError): infos = custom_dataset.evaluate(results, metric='mAP') def test_InterHand3D_dataset(): dataset = 'InterHand3DDataset' dataset_info = Config.fromfile( 'configs/_base_/datasets/interhand3d.py').dataset_info dataset_class = DATASETS.get(dataset) channel_cfg = dict( num_output_channels=42, dataset_joints=42, dataset_channel=[ [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41 ], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41 ]) data_cfg = dict( image_size=[256, 256], heatmap_size=[64, 64, 64], heatmap3d_depth_bound=400.0, heatmap_size_root=64, root_depth_bound=400.0, num_output_channels=channel_cfg['num_output_channels'], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel']) # Test data_cfg_copy = copy.deepcopy(data_cfg) _ = dataset_class( ann_file='tests/data/interhand2.6m/test_interhand2.6m_data.json', camera_file='tests/data/interhand2.6m/test_interhand2.6m_camera.json', joint_file='tests/data/interhand2.6m/test_interhand2.6m_joint_3d.json', img_prefix='tests/data/interhand2.6m/', data_cfg=data_cfg_copy, pipeline=[], dataset_info=dataset_info, test_mode=True) custom_dataset = dataset_class( ann_file='tests/data/interhand2.6m/test_interhand2.6m_data.json', camera_file='tests/data/interhand2.6m/test_interhand2.6m_camera.json', joint_file='tests/data/interhand2.6m/test_interhand2.6m_joint_3d.json', img_prefix='tests/data/interhand2.6m/', data_cfg=data_cfg_copy, pipeline=[], dataset_info=dataset_info, test_mode=False) assert custom_dataset.dataset_name == 'interhand3d' assert custom_dataset.test_mode is False assert custom_dataset.num_images == 4 assert len(custom_dataset.db) == 4 _ = custom_dataset[0] results = convert_db_to_output( custom_dataset.db, keys=['rel_root_depth', 'hand_type'], is_3d=True) infos = custom_dataset.evaluate( results, metric=['MRRPE', 'MPJPE', 'Handedness_acc']) assert_almost_equal(infos['MRRPE'], 0.0, decimal=5) assert_almost_equal(infos['MPJPE_all'], 0.0, decimal=5) assert_almost_equal(infos['MPJPE_single'], 0.0, decimal=5) assert_almost_equal(infos['MPJPE_interacting'], 0.0, decimal=5) assert_almost_equal(infos['Handedness_acc'], 1.0) with pytest.raises(KeyError): infos = custom_dataset.evaluate(results, metric='mAP')