# Copyright (c) OpenMMLab. All rights reserved. import numpy as np from mmpose.core.post_processing.nms import nms, oks_iou, oks_nms, soft_oks_nms def test_soft_oks_nms(): oks_thr = 0.9 kpts = [] kpts.append({ 'keypoints': np.tile(np.array([10, 10, 0.9]), [17, 1]), 'area': 100, 'score': 0.9 }) kpts.append({ 'keypoints': np.tile(np.array([10, 10, 0.9]), [17, 1]), 'area': 100, 'score': 0.4 }) kpts.append({ 'keypoints': np.tile(np.array([100, 100, 0.9]), [17, 1]), 'area': 100, 'score': 0.7 }) keep = soft_oks_nms([kpts[i] for i in range(len(kpts))], oks_thr) assert (keep == np.array([0, 2, 1])).all() keep = oks_nms([kpts[i] for i in range(len(kpts))], oks_thr) assert (keep == np.array([0, 2])).all() kpts_with_score_joints = [] kpts_with_score_joints.append({ 'keypoints': np.tile(np.array([10, 10, 0.9]), [17, 1]), 'area': 100, 'score': np.tile(np.array([0.9]), 17) }) kpts_with_score_joints.append({ 'keypoints': np.tile(np.array([10, 10, 0.9]), [17, 1]), 'area': 100, 'score': np.tile(np.array([0.4]), 17) }) kpts_with_score_joints.append({ 'keypoints': np.tile(np.array([100, 100, 0.9]), [17, 1]), 'area': 100, 'score': np.tile(np.array([0.7]), 17) }) keep = soft_oks_nms([ kpts_with_score_joints[i] for i in range(len(kpts_with_score_joints)) ], oks_thr, score_per_joint=True) assert (keep == np.array([0, 2, 1])).all() keep = oks_nms([ kpts_with_score_joints[i] for i in range(len(kpts_with_score_joints)) ], oks_thr, score_per_joint=True) assert (keep == np.array([0, 2])).all() def test_func_nms(): result = nms(np.array([[0, 0, 10, 10, 0.9], [0, 0, 10, 8, 0.8]]), 0.5) assert result == [0] def test_oks_iou(): result = oks_iou(np.ones([17 * 3]), np.ones([1, 17 * 3]), 1, [1]) assert result[0] == 1. result = oks_iou(np.zeros([17 * 3]), np.ones([1, 17 * 3]), 1, [1]) assert result[0] < 0.01