# Copyright (c) OpenMMLab. All rights reserved. import argparse import warnings import numpy as np import torch from mmpose.apis import init_pose_model try: import onnx import onnxruntime as rt except ImportError as e: raise ImportError(f'Please install onnx and onnxruntime first. {e}') try: from mmcv.onnx.symbolic import register_extra_symbolics except ModuleNotFoundError: raise NotImplementedError('please update mmcv to version>=1.0.4') def _convert_batchnorm(module): """Convert the syncBNs into normal BN3ds.""" module_output = module if isinstance(module, torch.nn.SyncBatchNorm): module_output = torch.nn.BatchNorm3d(module.num_features, module.eps, module.momentum, module.affine, module.track_running_stats) if module.affine: module_output.weight.data = module.weight.data.clone().detach() module_output.bias.data = module.bias.data.clone().detach() # keep requires_grad unchanged module_output.weight.requires_grad = module.weight.requires_grad module_output.bias.requires_grad = module.bias.requires_grad module_output.running_mean = module.running_mean module_output.running_var = module.running_var module_output.num_batches_tracked = module.num_batches_tracked for name, child in module.named_children(): module_output.add_module(name, _convert_batchnorm(child)) del module return module_output def pytorch2onnx(model, input_shape, opset_version=11, show=False, output_file='tmp.onnx', verify=False): """Convert pytorch model to onnx model. Args: model (:obj:`nn.Module`): The pytorch model to be exported. input_shape (tuple[int]): The input tensor shape of the model. opset_version (int): Opset version of onnx used. Default: 11. show (bool): Determines whether to print the onnx model architecture. Default: False. output_file (str): Output onnx model name. Default: 'tmp.onnx'. verify (bool): Determines whether to verify the onnx model. Default: False. """ model.cpu().eval() one_img = torch.randn(input_shape) register_extra_symbolics(opset_version) torch.onnx.export( model, one_img, output_file, export_params=True, keep_initializers_as_inputs=True, verbose=show, opset_version=opset_version) print(f'Successfully exported ONNX model: {output_file}') if verify: # check by onnx onnx_model = onnx.load(output_file) onnx.checker.check_model(onnx_model) # check the numerical value # get pytorch output pytorch_results = model(one_img) if not isinstance(pytorch_results, (list, tuple)): assert isinstance(pytorch_results, torch.Tensor) pytorch_results = [pytorch_results] # get onnx output input_all = [node.name for node in onnx_model.graph.input] input_initializer = [ node.name for node in onnx_model.graph.initializer ] net_feed_input = list(set(input_all) - set(input_initializer)) assert len(net_feed_input) == 1 sess = rt.InferenceSession(output_file) onnx_results = sess.run(None, {net_feed_input[0]: one_img.detach().numpy()}) # compare results assert len(pytorch_results) == len(onnx_results) for pt_result, onnx_result in zip(pytorch_results, onnx_results): assert np.allclose( pt_result.detach().cpu(), onnx_result, atol=1.e-5 ), 'The outputs are different between Pytorch and ONNX' print('The numerical values are same between Pytorch and ONNX') def parse_args(): parser = argparse.ArgumentParser( description='Convert MMPose models to ONNX') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument('--show', action='store_true', help='show onnx graph') parser.add_argument('--output-file', type=str, default='tmp.onnx') parser.add_argument('--opset-version', type=int, default=11) parser.add_argument( '--verify', action='store_true', help='verify the onnx model output against pytorch output') parser.add_argument( '--shape', type=int, nargs='+', default=[1, 3, 256, 192], help='input size') args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() assert args.opset_version == 11, 'MMPose only supports opset 11 now' # Following strings of text style are from colorama package bright_style, reset_style = '\x1b[1m', '\x1b[0m' red_text, blue_text = '\x1b[31m', '\x1b[34m' white_background = '\x1b[107m' msg = white_background + bright_style + red_text msg += 'DeprecationWarning: This tool will be deprecated in future. ' msg += blue_text + 'Welcome to use the unified model deployment toolbox ' msg += 'MMDeploy: https://github.com/open-mmlab/mmdeploy' msg += reset_style warnings.warn(msg) model = init_pose_model(args.config, args.checkpoint, device='cpu') model = _convert_batchnorm(model) # onnx.export does not support kwargs if hasattr(model, 'forward_dummy'): model.forward = model.forward_dummy else: raise NotImplementedError( 'Please implement the forward method for exporting.') # convert model to onnx file pytorch2onnx( model, args.shape, opset_version=args.opset_version, show=args.show, output_file=args.output_file, verify=args.verify)