georad commited on
Commit
cb0dfee
·
verified ·
1 Parent(s): 9910271

Update pages/type_text_v10.py

Browse files
Files changed (1) hide show
  1. pages/type_text_v10.py +10 -11
pages/type_text_v10.py CHANGED
@@ -59,8 +59,17 @@ if len(combined_chapters_rows_indexes_list) == 0:
59
  st.warning("Please select at least one chapter")
60
  st.write("COMBINED CHAPTERS ROWS INDEXES LIST: ", combined_chapters_rows_indexes_list)
61
  df_SBS = pd.read_csv("SBS_V2_0/Code_Table.csv", header=0, skip_blank_lines=False, skiprows = lambda x: x not in combined_chapters_rows_indexes_list)
62
- st.write(df_SBS.head(5))
63
 
 
 
 
 
 
 
 
 
 
 
64
 
65
 
66
 
@@ -109,16 +118,6 @@ INTdesc_embedding = model.encode(INTdesc_input)
109
 
110
  # Semantic search, Compute cosine similarity between all pairs of SBS descriptions
111
 
112
- #df_SBS = pd.read_csv("SBS_V2_Table.csv", index_col="SBS_Code", usecols=["Long_Description"]) # na_values=['NA']
113
- #df_SBS = pd.read_csv("SBS_V2_Table.csv", usecols=["SBS_Code_Hyphenated","Long_Description"])
114
- #from_line = 850 # Imaging services chapter start, adjust as needed
115
- #to_line = 1250 # Imaging services chapter end, adjust as needed
116
- #nrows = to_line - from_line + 1
117
- #skiprows = list(range(1,from_line - 1))
118
- #df_SBS = pd.read_csv("SBS_V2_0/Code_Table.csv", header=0, skip_blank_lines=False, skiprows=skiprows, nrows=nrows)
119
- #st.write(df_SBS.head(5))
120
-
121
- SBScorpus = df_SBS['Long_Description'].values.tolist()
122
  SBScorpus_embeddings = model.encode(SBScorpus)
123
 
124
  #my_model_results = pipeline("ner", model= "checkpoint-92")
 
59
  st.warning("Please select at least one chapter")
60
  st.write("COMBINED CHAPTERS ROWS INDEXES LIST: ", combined_chapters_rows_indexes_list)
61
  df_SBS = pd.read_csv("SBS_V2_0/Code_Table.csv", header=0, skip_blank_lines=False, skiprows = lambda x: x not in combined_chapters_rows_indexes_list)
 
62
 
63
+ #df_SBS = pd.read_csv("SBS_V2_0/Code_Table.csv", index_col="SBS_Code", usecols=["Long_Description"]) # na_values=['NA']
64
+ #df_SBS = pd.read_csv("SBS_V2_0/Code_Table.csv", usecols=["SBS_Code_Hyphenated","Long_Description"])
65
+ #from_line = 850 # Imaging services chapter start, adjust as needed
66
+ #to_line = 1250 # Imaging services chapter end, adjust as needed
67
+ #nrows = to_line - from_line + 1
68
+ #skiprows = list(range(1,from_line - 1))
69
+ #df_SBS = pd.read_csv("SBS_V2_0/Code_Table.csv", header=0, skip_blank_lines=False, skiprows=skiprows, nrows=nrows)
70
+
71
+ st.write(df_SBS.head(5))
72
+ SBScorpus = df_SBS['Long_Description'].values.tolist()
73
 
74
 
75
 
 
118
 
119
  # Semantic search, Compute cosine similarity between all pairs of SBS descriptions
120
 
 
 
 
 
 
 
 
 
 
 
121
  SBScorpus_embeddings = model.encode(SBScorpus)
122
 
123
  #my_model_results = pipeline("ner", model= "checkpoint-92")