File size: 5,019 Bytes
1e8354d
5bc4404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190f1a6
5bc4404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190f1a6
 
 
 
 
5bc4404
 
 
 
 
 
 
 
 
 
 
190f1a6
5bc4404
 
190f1a6
 
5bc4404
a2c859f
 
 
 
5bc4404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190f1a6
5bc4404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2c859f
 
5bc4404
 
 
 
 
 
 
 
 
 
 
190f1a6
5bc4404
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import gradio as gr
import torch
import ecco
import requests
from transformers import AutoTokenizer
from torch.nn import functional as F

header = """
import psycopg2

conn = psycopg2.connect("CONN")
cur = conn.cursor()

MIDDLE
def rename_customer(id, newName):\n\t# PROMPT\n\tcur.execute("UPDATE customer SET name =
"""

modelPath = {
    # "GPT2-Medium": "gpt2-medium",
    "CodeParrot-small": "codeparrot/codeparrot-small",
    # "CodeGen-350-Mono": "Salesforce/codegen-350M-mono",
    # "GPT-Neo-1.3B": "EleutherAI/gpt-neo-1.3B",
    # "CodeParrot": "codeparrot/codeparrot",
    # "CodeGen-2B-Mono": "Salesforce/codegen-2B-mono",
}

preloadModels = {}
for m in list(modelPath.keys()):
    preloadModels[m] = ecco.from_pretrained(modelPath[m])

topComments = []
rankings = requests.get("https://code-adv.herokuapp.com/db").json()['results']

def generation(tokenizer, model, content):
    decoder = 'Standard'
    num_beams = 2 if decoder == 'Beam' else None
    typical_p = 0.8 if decoder == 'Typical' else None
    do_sample = (decoder in ['Beam', 'Typical', 'Sample'])

    seek_token_ids = [
        tokenizer.encode('= \'" +')[1:],
        tokenizer.encode('= " +')[1:],
    ]

    full_output = model.generate(content, generate=6, do_sample=False)

    def next_words(code, position, seek_token_ids):
        op_model = model.generate(code, generate=1, do_sample=False)
        hidden_states = op_model.hidden_states
        layer_no = len(hidden_states) - 1
        h = hidden_states[-1]
        hidden_state = h[position - 1]
        logits = op_model.lm_head(op_model.to(hidden_state))
        softmax = F.softmax(logits, dim=-1)
        my_token_prob = softmax[seek_token_ids[0]]

        if len(seek_token_ids) > 1:
            newprompt = code + tokenizer.decode(seek_token_ids[0])
            return my_token_prob * next_words(newprompt, position + 1, seek_token_ids[1:])
        return my_token_prob

    prob = 0
    for opt in seek_token_ids:
        prob += next_words(content, len(tokenizer(content)['input_ids']), opt)
    return [
        "".join(full_output.tokens),
        str(prob.item() * 100),
        rankings
    ]

def clean_comment(txt):
    return txt.replace("\\", "").replace("\n", " ")

def code_from_prompts(
    rankMe,
    headerComment,
    fnComment,
    # model,
    type_hints,
    pre_content):
    # tokenizer = AutoTokenizer.from_pretrained(modelPath[model])
    # model = ecco.from_pretrained(modelPath[model])
    # model = preloadModels[model]
    tokenizer = AutoTokenizer.from_pretrained(modelPath["CodeParrot-small"])
    model = preloadModels["CodeParrot-small"]

    code = ""
    headerComment = headerComment.strip()
    if len(headerComment) > 0:
        code += "# " + clean_comment(headerComment) + "\n"
    code += header.strip().replace('CONN', "dbname='store'").replace('PROMPT', clean_comment(fnComment))

    if type_hints:
        code = code.replace('id,', 'id: int,')
        code = code.replace('id)', 'id: int)')
        code = code.replace('newName)', 'newName: str) -> None')

    if pre_content == 'None':
        code = code.replace('MIDDLE\n', '')
    elif 'Concatenation' in pre_content:
        code = code.replace('MIDDLE', """
def get_customer(id):\n\tcur.execute('SELECT * FROM customers WHERE id = ' + str(id))\n\treturn cur.fetchall()
""".strip() + "\n")
    elif 'composition' in pre_content:
        code = code.replace('MIDDLE', """
def get_customer(id):\n\tcur.execute('SELECT * FROM customers WHERE id = %s', str(id))\n\treturn cur.fetchall()
""".strip() + "\n")

    results = generation(tokenizer, model, code)
    if rankMe:
        prob = float(results[1])
        requests.post("https://code-adv.herokuapp.com/dbpost", json={
            "password": os.environ.get('SERVE_PASS', 'help'),
            "model": "codeparrot/codeparrot-small",
            "headerComment": headerComment,
            "bodyComment": fnComment,
            "prefunction": pre_content,
            "typeHints": type_hints,
            "probability": prob,
        })
    return results

iface = gr.Interface(
    fn=code_from_prompts,
	inputs=[
        gr.components.Checkbox(label="Submit score to server", value=True),
        gr.components.Textbox(label="Header comment", placeholder="OK to leave blank"),
        gr.components.Textbox(label="Function comment"),
        # gr.components.Radio(list(modelPath.keys()), label="Code Model"),
        gr.components.Checkbox(label="Include type hints"),
        gr.components.Radio([
            "None",
            "Proper composition: Include function 'WHERE id = %s'",
            "Concatenation: Include a function with 'WHERE id = ' + id",
        ], label="Has user already written a function?")
    ],
	outputs=[
        gr.components.Textbox(label="Most probable code"),
        gr.components.Textbox(label="Probability of concat"),
        gr.components.Json(value=rankings)
    ],
	description="Prompt the code model to write a SQL query with string concatenation.",
)
iface.launch()