File size: 11,269 Bytes
0a06673 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
# ===================================================================
#
# Copyright (c) 2018, Helder Eijs <[email protected]>
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ===================================================================
import abc
from Crypto.Util.py3compat import iter_range, bord, bchr, ABC
from Crypto import Random
class IntegerBase(ABC):
# Conversions
@abc.abstractmethod
def __int__(self):
pass
@abc.abstractmethod
def __str__(self):
pass
@abc.abstractmethod
def __repr__(self):
pass
@abc.abstractmethod
def to_bytes(self, block_size=0, byteorder='big'):
pass
@staticmethod
@abc.abstractmethod
def from_bytes(byte_string, byteorder='big'):
pass
# Relations
@abc.abstractmethod
def __eq__(self, term):
pass
@abc.abstractmethod
def __ne__(self, term):
pass
@abc.abstractmethod
def __lt__(self, term):
pass
@abc.abstractmethod
def __le__(self, term):
pass
@abc.abstractmethod
def __gt__(self, term):
pass
@abc.abstractmethod
def __ge__(self, term):
pass
@abc.abstractmethod
def __nonzero__(self):
pass
__bool__ = __nonzero__
@abc.abstractmethod
def is_negative(self):
pass
# Arithmetic operations
@abc.abstractmethod
def __add__(self, term):
pass
@abc.abstractmethod
def __sub__(self, term):
pass
@abc.abstractmethod
def __mul__(self, factor):
pass
@abc.abstractmethod
def __floordiv__(self, divisor):
pass
@abc.abstractmethod
def __mod__(self, divisor):
pass
@abc.abstractmethod
def inplace_pow(self, exponent, modulus=None):
pass
@abc.abstractmethod
def __pow__(self, exponent, modulus=None):
pass
@abc.abstractmethod
def __abs__(self):
pass
@abc.abstractmethod
def sqrt(self, modulus=None):
pass
@abc.abstractmethod
def __iadd__(self, term):
pass
@abc.abstractmethod
def __isub__(self, term):
pass
@abc.abstractmethod
def __imul__(self, term):
pass
@abc.abstractmethod
def __imod__(self, term):
pass
# Boolean/bit operations
@abc.abstractmethod
def __and__(self, term):
pass
@abc.abstractmethod
def __or__(self, term):
pass
@abc.abstractmethod
def __rshift__(self, pos):
pass
@abc.abstractmethod
def __irshift__(self, pos):
pass
@abc.abstractmethod
def __lshift__(self, pos):
pass
@abc.abstractmethod
def __ilshift__(self, pos):
pass
@abc.abstractmethod
def get_bit(self, n):
pass
# Extra
@abc.abstractmethod
def is_odd(self):
pass
@abc.abstractmethod
def is_even(self):
pass
@abc.abstractmethod
def size_in_bits(self):
pass
@abc.abstractmethod
def size_in_bytes(self):
pass
@abc.abstractmethod
def is_perfect_square(self):
pass
@abc.abstractmethod
def fail_if_divisible_by(self, small_prime):
pass
@abc.abstractmethod
def multiply_accumulate(self, a, b):
pass
@abc.abstractmethod
def set(self, source):
pass
@abc.abstractmethod
def inplace_inverse(self, modulus):
pass
@abc.abstractmethod
def inverse(self, modulus):
pass
@abc.abstractmethod
def gcd(self, term):
pass
@abc.abstractmethod
def lcm(self, term):
pass
@staticmethod
@abc.abstractmethod
def jacobi_symbol(a, n):
pass
@staticmethod
def _tonelli_shanks(n, p):
"""Tonelli-shanks algorithm for computing the square root
of n modulo a prime p.
n must be in the range [0..p-1].
p must be at least even.
The return value r is the square root of modulo p. If non-zero,
another solution will also exist (p-r).
Note we cannot assume that p is really a prime: if it's not,
we can either raise an exception or return the correct value.
"""
# See https://rosettacode.org/wiki/Tonelli-Shanks_algorithm
if n in (0, 1):
return n
if p % 4 == 3:
root = pow(n, (p + 1) // 4, p)
if pow(root, 2, p) != n:
raise ValueError("Cannot compute square root")
return root
s = 1
q = (p - 1) // 2
while not (q & 1):
s += 1
q >>= 1
z = n.__class__(2)
while True:
euler = pow(z, (p - 1) // 2, p)
if euler == 1:
z += 1
continue
if euler == p - 1:
break
# Most probably p is not a prime
raise ValueError("Cannot compute square root")
m = s
c = pow(z, q, p)
t = pow(n, q, p)
r = pow(n, (q + 1) // 2, p)
while t != 1:
for i in iter_range(0, m):
if pow(t, 2**i, p) == 1:
break
if i == m:
raise ValueError("Cannot compute square root of %d mod %d" % (n, p))
b = pow(c, 2**(m - i - 1), p)
m = i
c = b**2 % p
t = (t * b**2) % p
r = (r * b) % p
if pow(r, 2, p) != n:
raise ValueError("Cannot compute square root")
return r
@classmethod
def random(cls, **kwargs):
"""Generate a random natural integer of a certain size.
:Keywords:
exact_bits : positive integer
The length in bits of the resulting random Integer number.
The number is guaranteed to fulfil the relation:
2^bits > result >= 2^(bits - 1)
max_bits : positive integer
The maximum length in bits of the resulting random Integer number.
The number is guaranteed to fulfil the relation:
2^bits > result >=0
randfunc : callable
A function that returns a random byte string. The length of the
byte string is passed as parameter. Optional.
If not provided (or ``None``), randomness is read from the system RNG.
:Return: a Integer object
"""
exact_bits = kwargs.pop("exact_bits", None)
max_bits = kwargs.pop("max_bits", None)
randfunc = kwargs.pop("randfunc", None)
if randfunc is None:
randfunc = Random.new().read
if exact_bits is None and max_bits is None:
raise ValueError("Either 'exact_bits' or 'max_bits' must be specified")
if exact_bits is not None and max_bits is not None:
raise ValueError("'exact_bits' and 'max_bits' are mutually exclusive")
bits = exact_bits or max_bits
bytes_needed = ((bits - 1) // 8) + 1
significant_bits_msb = 8 - (bytes_needed * 8 - bits)
msb = bord(randfunc(1)[0])
if exact_bits is not None:
msb |= 1 << (significant_bits_msb - 1)
msb &= (1 << significant_bits_msb) - 1
return cls.from_bytes(bchr(msb) + randfunc(bytes_needed - 1))
@classmethod
def random_range(cls, **kwargs):
"""Generate a random integer within a given internal.
:Keywords:
min_inclusive : integer
The lower end of the interval (inclusive).
max_inclusive : integer
The higher end of the interval (inclusive).
max_exclusive : integer
The higher end of the interval (exclusive).
randfunc : callable
A function that returns a random byte string. The length of the
byte string is passed as parameter. Optional.
If not provided (or ``None``), randomness is read from the system RNG.
:Returns:
An Integer randomly taken in the given interval.
"""
min_inclusive = kwargs.pop("min_inclusive", None)
max_inclusive = kwargs.pop("max_inclusive", None)
max_exclusive = kwargs.pop("max_exclusive", None)
randfunc = kwargs.pop("randfunc", None)
if kwargs:
raise ValueError("Unknown keywords: " + str(kwargs.keys))
if None not in (max_inclusive, max_exclusive):
raise ValueError("max_inclusive and max_exclusive cannot be both"
" specified")
if max_exclusive is not None:
max_inclusive = max_exclusive - 1
if None in (min_inclusive, max_inclusive):
raise ValueError("Missing keyword to identify the interval")
if randfunc is None:
randfunc = Random.new().read
norm_maximum = max_inclusive - min_inclusive
bits_needed = cls(norm_maximum).size_in_bits()
norm_candidate = -1
while not 0 <= norm_candidate <= norm_maximum:
norm_candidate = cls.random(
max_bits=bits_needed,
randfunc=randfunc
)
return norm_candidate + min_inclusive
@staticmethod
@abc.abstractmethod
def _mult_modulo_bytes(term1, term2, modulus):
"""Multiply two integers, take the modulo, and encode as big endian.
This specialized method is used for RSA decryption.
Args:
term1 : integer
The first term of the multiplication, non-negative.
term2 : integer
The second term of the multiplication, non-negative.
modulus: integer
The modulus, a positive odd number.
:Returns:
A byte string, with the result of the modular multiplication
encoded in big endian mode.
It is as long as the modulus would be, with zero padding
on the left if needed.
"""
pass
|