|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import print_function |
|
|
|
import re |
|
import struct |
|
import binascii |
|
from collections import namedtuple |
|
|
|
from Crypto.Util.py3compat import bord, tobytes, tostr, bchr, is_string |
|
from Crypto.Util.number import bytes_to_long, long_to_bytes |
|
|
|
from Crypto.Math.Numbers import Integer |
|
from Crypto.Util.asn1 import (DerObjectId, DerOctetString, DerSequence, |
|
DerBitString) |
|
|
|
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib, VoidPointer, |
|
SmartPointer, c_size_t, c_uint8_ptr, |
|
c_ulonglong, null_pointer) |
|
|
|
from Crypto.PublicKey import (_expand_subject_public_key_info, |
|
_create_subject_public_key_info, |
|
_extract_subject_public_key_info) |
|
|
|
from Crypto.Hash import SHA512, SHAKE256 |
|
|
|
from Crypto.Random import get_random_bytes |
|
from Crypto.Random.random import getrandbits |
|
|
|
|
|
_ec_lib = load_pycryptodome_raw_lib("Crypto.PublicKey._ec_ws", """ |
|
typedef void EcContext; |
|
typedef void EcPoint; |
|
int ec_ws_new_context(EcContext **pec_ctx, |
|
const uint8_t *modulus, |
|
const uint8_t *b, |
|
const uint8_t *order, |
|
size_t len, |
|
uint64_t seed); |
|
void ec_free_context(EcContext *ec_ctx); |
|
int ec_ws_new_point(EcPoint **pecp, |
|
const uint8_t *x, |
|
const uint8_t *y, |
|
size_t len, |
|
const EcContext *ec_ctx); |
|
void ec_ws_free_point(EcPoint *ecp); |
|
int ec_ws_get_xy(uint8_t *x, |
|
uint8_t *y, |
|
size_t len, |
|
const EcPoint *ecp); |
|
int ec_ws_double(EcPoint *p); |
|
int ec_ws_add(EcPoint *ecpa, EcPoint *ecpb); |
|
int ec_ws_scalar(EcPoint *ecp, |
|
const uint8_t *k, |
|
size_t len, |
|
uint64_t seed); |
|
int ec_ws_clone(EcPoint **pecp2, const EcPoint *ecp); |
|
int ec_ws_cmp(const EcPoint *ecp1, const EcPoint *ecp2); |
|
int ec_ws_neg(EcPoint *p); |
|
""") |
|
|
|
_ed25519_lib = load_pycryptodome_raw_lib("Crypto.PublicKey._ed25519", """ |
|
typedef void Point; |
|
int ed25519_new_point(Point **out, |
|
const uint8_t x[32], |
|
const uint8_t y[32], |
|
size_t modsize, |
|
const void *context); |
|
int ed25519_clone(Point **P, const Point *Q); |
|
void ed25519_free_point(Point *p); |
|
int ed25519_cmp(const Point *p1, const Point *p2); |
|
int ed25519_neg(Point *p); |
|
int ed25519_get_xy(uint8_t *xb, uint8_t *yb, size_t modsize, Point *p); |
|
int ed25519_double(Point *p); |
|
int ed25519_add(Point *P1, const Point *P2); |
|
int ed25519_scalar(Point *P, const uint8_t *scalar, size_t scalar_len, uint64_t seed); |
|
""") |
|
|
|
_ed448_lib = load_pycryptodome_raw_lib("Crypto.PublicKey._ed448", """ |
|
typedef void EcContext; |
|
typedef void PointEd448; |
|
int ed448_new_context(EcContext **pec_ctx); |
|
void ed448_context(EcContext *ec_ctx); |
|
void ed448_free_context(EcContext *ec_ctx); |
|
int ed448_new_point(PointEd448 **out, |
|
const uint8_t x[56], |
|
const uint8_t y[56], |
|
size_t len, |
|
const EcContext *context); |
|
int ed448_clone(PointEd448 **P, const PointEd448 *Q); |
|
void ed448_free_point(PointEd448 *p); |
|
int ed448_cmp(const PointEd448 *p1, const PointEd448 *p2); |
|
int ed448_neg(PointEd448 *p); |
|
int ed448_get_xy(uint8_t *xb, uint8_t *yb, size_t len, const PointEd448 *p); |
|
int ed448_double(PointEd448 *p); |
|
int ed448_add(PointEd448 *P1, const PointEd448 *P2); |
|
int ed448_scalar(PointEd448 *P, const uint8_t *scalar, size_t scalar_len, uint64_t seed); |
|
""") |
|
|
|
|
|
def lib_func(ecc_obj, func_name): |
|
if ecc_obj._curve.desc == "Ed25519": |
|
result = getattr(_ed25519_lib, "ed25519_" + func_name) |
|
elif ecc_obj._curve.desc == "Ed448": |
|
result = getattr(_ed448_lib, "ed448_" + func_name) |
|
else: |
|
result = getattr(_ec_lib, "ec_ws_" + func_name) |
|
return result |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_Curve = namedtuple("_Curve", "p b order Gx Gy G modulus_bits oid context desc openssh name") |
|
_curves = {} |
|
|
|
|
|
p192_names = ["p192", "NIST P-192", "P-192", "prime192v1", "secp192r1", |
|
"nistp192"] |
|
|
|
|
|
def init_p192(): |
|
p = 0xfffffffffffffffffffffffffffffffeffffffffffffffff |
|
b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1 |
|
order = 0xffffffffffffffffffffffff99def836146bc9b1b4d22831 |
|
Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012 |
|
Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811 |
|
|
|
p192_modulus = long_to_bytes(p, 24) |
|
p192_b = long_to_bytes(b, 24) |
|
p192_order = long_to_bytes(order, 24) |
|
|
|
ec_p192_context = VoidPointer() |
|
result = _ec_lib.ec_ws_new_context(ec_p192_context.address_of(), |
|
c_uint8_ptr(p192_modulus), |
|
c_uint8_ptr(p192_b), |
|
c_uint8_ptr(p192_order), |
|
c_size_t(len(p192_modulus)), |
|
c_ulonglong(getrandbits(64)) |
|
) |
|
if result: |
|
raise ImportError("Error %d initializing P-192 context" % result) |
|
|
|
context = SmartPointer(ec_p192_context.get(), _ec_lib.ec_free_context) |
|
p192 = _Curve(Integer(p), |
|
Integer(b), |
|
Integer(order), |
|
Integer(Gx), |
|
Integer(Gy), |
|
None, |
|
192, |
|
"1.2.840.10045.3.1.1", |
|
context, |
|
"NIST P-192", |
|
"ecdsa-sha2-nistp192", |
|
"p192") |
|
global p192_names |
|
_curves.update(dict.fromkeys(p192_names, p192)) |
|
|
|
|
|
init_p192() |
|
del init_p192 |
|
|
|
|
|
p224_names = ["p224", "NIST P-224", "P-224", "prime224v1", "secp224r1", |
|
"nistp224"] |
|
|
|
|
|
def init_p224(): |
|
p = 0xffffffffffffffffffffffffffffffff000000000000000000000001 |
|
b = 0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4 |
|
order = 0xffffffffffffffffffffffffffff16a2e0b8f03e13dd29455c5c2a3d |
|
Gx = 0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21 |
|
Gy = 0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34 |
|
|
|
p224_modulus = long_to_bytes(p, 28) |
|
p224_b = long_to_bytes(b, 28) |
|
p224_order = long_to_bytes(order, 28) |
|
|
|
ec_p224_context = VoidPointer() |
|
result = _ec_lib.ec_ws_new_context(ec_p224_context.address_of(), |
|
c_uint8_ptr(p224_modulus), |
|
c_uint8_ptr(p224_b), |
|
c_uint8_ptr(p224_order), |
|
c_size_t(len(p224_modulus)), |
|
c_ulonglong(getrandbits(64)) |
|
) |
|
if result: |
|
raise ImportError("Error %d initializing P-224 context" % result) |
|
|
|
context = SmartPointer(ec_p224_context.get(), _ec_lib.ec_free_context) |
|
p224 = _Curve(Integer(p), |
|
Integer(b), |
|
Integer(order), |
|
Integer(Gx), |
|
Integer(Gy), |
|
None, |
|
224, |
|
"1.3.132.0.33", |
|
context, |
|
"NIST P-224", |
|
"ecdsa-sha2-nistp224", |
|
"p224") |
|
global p224_names |
|
_curves.update(dict.fromkeys(p224_names, p224)) |
|
|
|
|
|
init_p224() |
|
del init_p224 |
|
|
|
|
|
p256_names = ["p256", "NIST P-256", "P-256", "prime256v1", "secp256r1", |
|
"nistp256"] |
|
|
|
|
|
def init_p256(): |
|
p = 0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff |
|
b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b |
|
order = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551 |
|
Gx = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296 |
|
Gy = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5 |
|
|
|
p256_modulus = long_to_bytes(p, 32) |
|
p256_b = long_to_bytes(b, 32) |
|
p256_order = long_to_bytes(order, 32) |
|
|
|
ec_p256_context = VoidPointer() |
|
result = _ec_lib.ec_ws_new_context(ec_p256_context.address_of(), |
|
c_uint8_ptr(p256_modulus), |
|
c_uint8_ptr(p256_b), |
|
c_uint8_ptr(p256_order), |
|
c_size_t(len(p256_modulus)), |
|
c_ulonglong(getrandbits(64)) |
|
) |
|
if result: |
|
raise ImportError("Error %d initializing P-256 context" % result) |
|
|
|
context = SmartPointer(ec_p256_context.get(), _ec_lib.ec_free_context) |
|
p256 = _Curve(Integer(p), |
|
Integer(b), |
|
Integer(order), |
|
Integer(Gx), |
|
Integer(Gy), |
|
None, |
|
256, |
|
"1.2.840.10045.3.1.7", |
|
context, |
|
"NIST P-256", |
|
"ecdsa-sha2-nistp256", |
|
"p256") |
|
global p256_names |
|
_curves.update(dict.fromkeys(p256_names, p256)) |
|
|
|
|
|
init_p256() |
|
del init_p256 |
|
|
|
|
|
p384_names = ["p384", "NIST P-384", "P-384", "prime384v1", "secp384r1", |
|
"nistp384"] |
|
|
|
|
|
def init_p384(): |
|
p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff |
|
b = 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef |
|
order = 0xffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973 |
|
Gx = 0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760aB7 |
|
Gy = 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5F |
|
|
|
p384_modulus = long_to_bytes(p, 48) |
|
p384_b = long_to_bytes(b, 48) |
|
p384_order = long_to_bytes(order, 48) |
|
|
|
ec_p384_context = VoidPointer() |
|
result = _ec_lib.ec_ws_new_context(ec_p384_context.address_of(), |
|
c_uint8_ptr(p384_modulus), |
|
c_uint8_ptr(p384_b), |
|
c_uint8_ptr(p384_order), |
|
c_size_t(len(p384_modulus)), |
|
c_ulonglong(getrandbits(64)) |
|
) |
|
if result: |
|
raise ImportError("Error %d initializing P-384 context" % result) |
|
|
|
context = SmartPointer(ec_p384_context.get(), _ec_lib.ec_free_context) |
|
p384 = _Curve(Integer(p), |
|
Integer(b), |
|
Integer(order), |
|
Integer(Gx), |
|
Integer(Gy), |
|
None, |
|
384, |
|
"1.3.132.0.34", |
|
context, |
|
"NIST P-384", |
|
"ecdsa-sha2-nistp384", |
|
"p384") |
|
global p384_names |
|
_curves.update(dict.fromkeys(p384_names, p384)) |
|
|
|
|
|
init_p384() |
|
del init_p384 |
|
|
|
|
|
p521_names = ["p521", "NIST P-521", "P-521", "prime521v1", "secp521r1", |
|
"nistp521"] |
|
|
|
|
|
def init_p521(): |
|
p = 0x000001ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff |
|
b = 0x00000051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00 |
|
order = 0x000001fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa51868783bf2f966b7fcc0148f709a5d03bb5c9b8899c47aebb6fb71e91386409 |
|
Gx = 0x000000c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66 |
|
Gy = 0x0000011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650 |
|
|
|
p521_modulus = long_to_bytes(p, 66) |
|
p521_b = long_to_bytes(b, 66) |
|
p521_order = long_to_bytes(order, 66) |
|
|
|
ec_p521_context = VoidPointer() |
|
result = _ec_lib.ec_ws_new_context(ec_p521_context.address_of(), |
|
c_uint8_ptr(p521_modulus), |
|
c_uint8_ptr(p521_b), |
|
c_uint8_ptr(p521_order), |
|
c_size_t(len(p521_modulus)), |
|
c_ulonglong(getrandbits(64)) |
|
) |
|
if result: |
|
raise ImportError("Error %d initializing P-521 context" % result) |
|
|
|
context = SmartPointer(ec_p521_context.get(), _ec_lib.ec_free_context) |
|
p521 = _Curve(Integer(p), |
|
Integer(b), |
|
Integer(order), |
|
Integer(Gx), |
|
Integer(Gy), |
|
None, |
|
521, |
|
"1.3.132.0.35", |
|
context, |
|
"NIST P-521", |
|
"ecdsa-sha2-nistp521", |
|
"p521") |
|
global p521_names |
|
_curves.update(dict.fromkeys(p521_names, p521)) |
|
|
|
|
|
init_p521() |
|
del init_p521 |
|
|
|
|
|
ed25519_names = ["ed25519", "Ed25519"] |
|
|
|
|
|
def init_ed25519(): |
|
p = 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed |
|
order = 0x1000000000000000000000000000000014def9dea2f79cd65812631a5cf5d3ed |
|
Gx = 0x216936d3cd6e53fec0a4e231fdd6dc5c692cc7609525a7b2c9562d608f25d51a |
|
Gy = 0x6666666666666666666666666666666666666666666666666666666666666658 |
|
|
|
ed25519 = _Curve(Integer(p), |
|
None, |
|
Integer(order), |
|
Integer(Gx), |
|
Integer(Gy), |
|
None, |
|
255, |
|
"1.3.101.112", |
|
None, |
|
"Ed25519", |
|
"ssh-ed25519", |
|
"ed25519") |
|
global ed25519_names |
|
_curves.update(dict.fromkeys(ed25519_names, ed25519)) |
|
|
|
|
|
init_ed25519() |
|
del init_ed25519 |
|
|
|
|
|
ed448_names = ["ed448", "Ed448"] |
|
|
|
|
|
def init_ed448(): |
|
p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffffff |
|
order = 0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffff7cca23e9c44edb49aed63690216cc2728dc58f552378c292ab5844f3 |
|
Gx = 0x4f1970c66bed0ded221d15a622bf36da9e146570470f1767ea6de324a3d3a46412ae1af72ab66511433b80e18b00938e2626a82bc70cc05e |
|
Gy = 0x693f46716eb6bc248876203756c9c7624bea73736ca3984087789c1e05a0c2d73ad3ff1ce67c39c4fdbd132c4ed7c8ad9808795bf230fa14 |
|
|
|
ed448_context = VoidPointer() |
|
result = _ed448_lib.ed448_new_context(ed448_context.address_of()) |
|
if result: |
|
raise ImportError("Error %d initializing Ed448 context" % result) |
|
|
|
context = SmartPointer(ed448_context.get(), _ed448_lib.ed448_free_context) |
|
|
|
ed448 = _Curve(Integer(p), |
|
None, |
|
Integer(order), |
|
Integer(Gx), |
|
Integer(Gy), |
|
None, |
|
448, |
|
"1.3.101.113", |
|
context, |
|
"Ed448", |
|
None, |
|
"ed448") |
|
global ed448_names |
|
_curves.update(dict.fromkeys(ed448_names, ed448)) |
|
|
|
|
|
init_ed448() |
|
del init_ed448 |
|
|
|
|
|
class UnsupportedEccFeature(ValueError): |
|
pass |
|
|
|
|
|
class EccPoint(object): |
|
"""A class to model a point on an Elliptic Curve. |
|
|
|
The class supports operators for: |
|
|
|
* Adding two points: ``R = S + T`` |
|
* In-place addition: ``S += T`` |
|
* Negating a point: ``R = -T`` |
|
* Comparing two points: ``if S == T: ...`` or ``if S != T: ...`` |
|
* Multiplying a point by a scalar: ``R = S*k`` |
|
* In-place multiplication by a scalar: ``T *= k`` |
|
|
|
:ivar x: The affine X-coordinate of the ECC point |
|
:vartype x: integer |
|
|
|
:ivar y: The affine Y-coordinate of the ECC point |
|
:vartype y: integer |
|
|
|
:ivar xy: The tuple with affine X- and Y- coordinates |
|
""" |
|
|
|
def __init__(self, x, y, curve="p256"): |
|
|
|
try: |
|
self._curve = _curves[curve] |
|
except KeyError: |
|
raise ValueError("Unknown curve name %s" % str(curve)) |
|
self._curve_name = curve |
|
|
|
modulus_bytes = self.size_in_bytes() |
|
|
|
xb = long_to_bytes(x, modulus_bytes) |
|
yb = long_to_bytes(y, modulus_bytes) |
|
if len(xb) != modulus_bytes or len(yb) != modulus_bytes: |
|
raise ValueError("Incorrect coordinate length") |
|
|
|
new_point = lib_func(self, "new_point") |
|
free_func = lib_func(self, "free_point") |
|
|
|
self._point = VoidPointer() |
|
try: |
|
context = self._curve.context.get() |
|
except AttributeError: |
|
context = null_pointer |
|
result = new_point(self._point.address_of(), |
|
c_uint8_ptr(xb), |
|
c_uint8_ptr(yb), |
|
c_size_t(modulus_bytes), |
|
context) |
|
|
|
if result: |
|
if result == 15: |
|
raise ValueError("The EC point does not belong to the curve") |
|
raise ValueError("Error %d while instantiating an EC point" % result) |
|
|
|
|
|
|
|
self._point = SmartPointer(self._point.get(), free_func) |
|
|
|
def set(self, point): |
|
clone = lib_func(self, "clone") |
|
free_func = lib_func(self, "free_point") |
|
|
|
self._point = VoidPointer() |
|
result = clone(self._point.address_of(), |
|
point._point.get()) |
|
|
|
if result: |
|
raise ValueError("Error %d while cloning an EC point" % result) |
|
|
|
self._point = SmartPointer(self._point.get(), free_func) |
|
return self |
|
|
|
def __eq__(self, point): |
|
if not isinstance(point, EccPoint): |
|
return False |
|
|
|
cmp_func = lib_func(self, "cmp") |
|
return 0 == cmp_func(self._point.get(), point._point.get()) |
|
|
|
|
|
def __ne__(self, point): |
|
return not self == point |
|
|
|
def __neg__(self): |
|
neg_func = lib_func(self, "neg") |
|
np = self.copy() |
|
result = neg_func(np._point.get()) |
|
if result: |
|
raise ValueError("Error %d while inverting an EC point" % result) |
|
return np |
|
|
|
def copy(self): |
|
"""Return a copy of this point.""" |
|
x, y = self.xy |
|
np = EccPoint(x, y, self._curve_name) |
|
return np |
|
|
|
def _is_eddsa(self): |
|
return self._curve.name in ("ed25519", "ed448") |
|
|
|
def is_point_at_infinity(self): |
|
"""``True`` if this is the *point-at-infinity*.""" |
|
|
|
if self._is_eddsa(): |
|
return self.x == 0 |
|
else: |
|
return self.xy == (0, 0) |
|
|
|
def point_at_infinity(self): |
|
"""Return the *point-at-infinity* for the curve.""" |
|
|
|
if self._is_eddsa(): |
|
return EccPoint(0, 1, self._curve_name) |
|
else: |
|
return EccPoint(0, 0, self._curve_name) |
|
|
|
@property |
|
def x(self): |
|
return self.xy[0] |
|
|
|
@property |
|
def y(self): |
|
return self.xy[1] |
|
|
|
@property |
|
def xy(self): |
|
modulus_bytes = self.size_in_bytes() |
|
xb = bytearray(modulus_bytes) |
|
yb = bytearray(modulus_bytes) |
|
get_xy = lib_func(self, "get_xy") |
|
result = get_xy(c_uint8_ptr(xb), |
|
c_uint8_ptr(yb), |
|
c_size_t(modulus_bytes), |
|
self._point.get()) |
|
if result: |
|
raise ValueError("Error %d while encoding an EC point" % result) |
|
|
|
return (Integer(bytes_to_long(xb)), Integer(bytes_to_long(yb))) |
|
|
|
def size_in_bytes(self): |
|
"""Size of each coordinate, in bytes.""" |
|
return (self.size_in_bits() + 7) // 8 |
|
|
|
def size_in_bits(self): |
|
"""Size of each coordinate, in bits.""" |
|
return self._curve.modulus_bits |
|
|
|
def double(self): |
|
"""Double this point (in-place operation). |
|
|
|
Returns: |
|
This same object (to enable chaining). |
|
""" |
|
|
|
double_func = lib_func(self, "double") |
|
result = double_func(self._point.get()) |
|
if result: |
|
raise ValueError("Error %d while doubling an EC point" % result) |
|
return self |
|
|
|
def __iadd__(self, point): |
|
"""Add a second point to this one""" |
|
|
|
add_func = lib_func(self, "add") |
|
result = add_func(self._point.get(), point._point.get()) |
|
if result: |
|
if result == 16: |
|
raise ValueError("EC points are not on the same curve") |
|
raise ValueError("Error %d while adding two EC points" % result) |
|
return self |
|
|
|
def __add__(self, point): |
|
"""Return a new point, the addition of this one and another""" |
|
|
|
np = self.copy() |
|
np += point |
|
return np |
|
|
|
def __imul__(self, scalar): |
|
"""Multiply this point by a scalar""" |
|
|
|
scalar_func = lib_func(self, "scalar") |
|
if scalar < 0: |
|
raise ValueError("Scalar multiplication is only defined for non-negative integers") |
|
sb = long_to_bytes(scalar) |
|
result = scalar_func(self._point.get(), |
|
c_uint8_ptr(sb), |
|
c_size_t(len(sb)), |
|
c_ulonglong(getrandbits(64))) |
|
if result: |
|
raise ValueError("Error %d during scalar multiplication" % result) |
|
return self |
|
|
|
def __mul__(self, scalar): |
|
"""Return a new point, the scalar product of this one""" |
|
|
|
np = self.copy() |
|
np *= scalar |
|
return np |
|
|
|
def __rmul__(self, left_hand): |
|
return self.__mul__(left_hand) |
|
|
|
|
|
|
|
p192_G = EccPoint(_curves['p192'].Gx, _curves['p192'].Gy, "p192") |
|
p192 = _curves['p192']._replace(G=p192_G) |
|
_curves.update(dict.fromkeys(p192_names, p192)) |
|
del p192_G, p192, p192_names |
|
|
|
p224_G = EccPoint(_curves['p224'].Gx, _curves['p224'].Gy, "p224") |
|
p224 = _curves['p224']._replace(G=p224_G) |
|
_curves.update(dict.fromkeys(p224_names, p224)) |
|
del p224_G, p224, p224_names |
|
|
|
p256_G = EccPoint(_curves['p256'].Gx, _curves['p256'].Gy, "p256") |
|
p256 = _curves['p256']._replace(G=p256_G) |
|
_curves.update(dict.fromkeys(p256_names, p256)) |
|
del p256_G, p256, p256_names |
|
|
|
p384_G = EccPoint(_curves['p384'].Gx, _curves['p384'].Gy, "p384") |
|
p384 = _curves['p384']._replace(G=p384_G) |
|
_curves.update(dict.fromkeys(p384_names, p384)) |
|
del p384_G, p384, p384_names |
|
|
|
p521_G = EccPoint(_curves['p521'].Gx, _curves['p521'].Gy, "p521") |
|
p521 = _curves['p521']._replace(G=p521_G) |
|
_curves.update(dict.fromkeys(p521_names, p521)) |
|
del p521_G, p521, p521_names |
|
|
|
ed25519_G = EccPoint(_curves['Ed25519'].Gx, _curves['Ed25519'].Gy, "Ed25519") |
|
ed25519 = _curves['Ed25519']._replace(G=ed25519_G) |
|
_curves.update(dict.fromkeys(ed25519_names, ed25519)) |
|
del ed25519_G, ed25519, ed25519_names |
|
|
|
ed448_G = EccPoint(_curves['Ed448'].Gx, _curves['Ed448'].Gy, "Ed448") |
|
ed448 = _curves['Ed448']._replace(G=ed448_G) |
|
_curves.update(dict.fromkeys(ed448_names, ed448)) |
|
del ed448_G, ed448, ed448_names |
|
|
|
|
|
class EccKey(object): |
|
r"""Class defining an ECC key. |
|
Do not instantiate directly. |
|
Use :func:`generate`, :func:`construct` or :func:`import_key` instead. |
|
|
|
:ivar curve: The name of the curve as defined in the `ECC table`_. |
|
:vartype curve: string |
|
|
|
:ivar pointQ: an ECC point representating the public component. |
|
:vartype pointQ: :class:`EccPoint` |
|
|
|
:ivar d: A scalar that represents the private component |
|
in NIST P curves. It is smaller than the |
|
order of the generator point. |
|
:vartype d: integer |
|
|
|
:ivar seed: A seed that representats the private component |
|
in EdDSA curves |
|
(Ed25519, 32 bytes; Ed448, 57 bytes). |
|
:vartype seed: bytes |
|
""" |
|
|
|
def __init__(self, **kwargs): |
|
"""Create a new ECC key |
|
|
|
Keywords: |
|
curve : string |
|
The name of the curve. |
|
d : integer |
|
Mandatory for a private key one NIST P curves. |
|
It must be in the range ``[1..order-1]``. |
|
seed : bytes |
|
Mandatory for a private key on the Ed25519 (32 bytes) |
|
or Ed448 (57 bytes) curve. |
|
point : EccPoint |
|
Mandatory for a public key. If provided for a private key, |
|
the implementation will NOT check whether it matches ``d``. |
|
|
|
Only one parameter among ``d``, ``seed`` or ``point`` may be used. |
|
""" |
|
|
|
kwargs_ = dict(kwargs) |
|
curve_name = kwargs_.pop("curve", None) |
|
self._d = kwargs_.pop("d", None) |
|
self._seed = kwargs_.pop("seed", None) |
|
self._point = kwargs_.pop("point", None) |
|
if curve_name is None and self._point: |
|
curve_name = self._point._curve_name |
|
if kwargs_: |
|
raise TypeError("Unknown parameters: " + str(kwargs_)) |
|
|
|
if curve_name not in _curves: |
|
raise ValueError("Unsupported curve (%s)" % curve_name) |
|
self._curve = _curves[curve_name] |
|
self.curve = self._curve.desc |
|
|
|
count = int(self._d is not None) + int(self._seed is not None) |
|
|
|
if count == 0: |
|
if self._point is None: |
|
raise ValueError("At lest one between parameters 'point', 'd' or 'seed' must be specified") |
|
return |
|
|
|
if count == 2: |
|
raise ValueError("Parameters d and seed are mutually exclusive") |
|
|
|
|
|
|
|
if not self._is_eddsa(): |
|
if self._seed is not None: |
|
raise ValueError("Parameter 'seed' can only be used with Ed25519 or Ed448") |
|
self._d = Integer(self._d) |
|
if not 1 <= self._d < self._curve.order: |
|
raise ValueError("Parameter d must be an integer smaller than the curve order") |
|
else: |
|
if self._d is not None: |
|
raise ValueError("Parameter d can only be used with NIST P curves") |
|
|
|
if self._curve.name == "ed25519": |
|
if len(self._seed) != 32: |
|
raise ValueError("Parameter seed must be 32 bytes long for Ed25519") |
|
seed_hash = SHA512.new(self._seed).digest() |
|
self._prefix = seed_hash[32:] |
|
tmp = bytearray(seed_hash[:32]) |
|
tmp[0] &= 0xF8 |
|
tmp[31] = (tmp[31] & 0x7F) | 0x40 |
|
|
|
elif self._curve.name == "ed448": |
|
if len(self._seed) != 57: |
|
raise ValueError("Parameter seed must be 57 bytes long for Ed448") |
|
seed_hash = SHAKE256.new(self._seed).read(114) |
|
self._prefix = seed_hash[57:] |
|
tmp = bytearray(seed_hash[:57]) |
|
tmp[0] &= 0xFC |
|
tmp[55] |= 0x80 |
|
tmp[56] = 0 |
|
self._d = Integer.from_bytes(tmp, byteorder='little') |
|
|
|
def _is_eddsa(self): |
|
return self._curve.desc in ("Ed25519", "Ed448") |
|
|
|
def __eq__(self, other): |
|
if not isinstance(other, EccKey): |
|
return False |
|
|
|
if other.has_private() != self.has_private(): |
|
return False |
|
|
|
return other.pointQ == self.pointQ |
|
|
|
def __repr__(self): |
|
if self.has_private(): |
|
if self._is_eddsa(): |
|
extra = ", seed=%s" % tostr(binascii.hexlify(self._seed)) |
|
else: |
|
extra = ", d=%d" % int(self._d) |
|
else: |
|
extra = "" |
|
x, y = self.pointQ.xy |
|
return "EccKey(curve='%s', point_x=%d, point_y=%d%s)" % (self._curve.desc, x, y, extra) |
|
|
|
def has_private(self): |
|
"""``True`` if this key can be used for making signatures or decrypting data.""" |
|
|
|
return self._d is not None |
|
|
|
|
|
def _sign(self, z, k): |
|
assert 0 < k < self._curve.order |
|
|
|
order = self._curve.order |
|
blind = Integer.random_range(min_inclusive=1, |
|
max_exclusive=order) |
|
|
|
blind_d = self._d * blind |
|
inv_blind_k = (blind * k).inverse(order) |
|
|
|
r = (self._curve.G * k).x % order |
|
s = inv_blind_k * (blind * z + blind_d * r) % order |
|
return (r, s) |
|
|
|
|
|
def _verify(self, z, rs): |
|
order = self._curve.order |
|
sinv = rs[1].inverse(order) |
|
point1 = self._curve.G * ((sinv * z) % order) |
|
point2 = self.pointQ * ((sinv * rs[0]) % order) |
|
return (point1 + point2).x == rs[0] |
|
|
|
@property |
|
def d(self): |
|
if not self.has_private(): |
|
raise ValueError("This is not a private ECC key") |
|
return self._d |
|
|
|
@property |
|
def seed(self): |
|
if not self.has_private(): |
|
raise ValueError("This is not a private ECC key") |
|
return self._seed |
|
|
|
@property |
|
def pointQ(self): |
|
if self._point is None: |
|
self._point = self._curve.G * self._d |
|
return self._point |
|
|
|
def public_key(self): |
|
"""A matching ECC public key. |
|
|
|
Returns: |
|
a new :class:`EccKey` object |
|
""" |
|
|
|
return EccKey(curve=self._curve.desc, point=self.pointQ) |
|
|
|
def _export_SEC1(self, compress): |
|
if self._is_eddsa(): |
|
raise ValueError("SEC1 format is unsupported for EdDSA curves") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modulus_bytes = self.pointQ.size_in_bytes() |
|
|
|
if compress: |
|
if self.pointQ.y.is_odd(): |
|
first_byte = b'\x03' |
|
else: |
|
first_byte = b'\x02' |
|
public_key = (first_byte + |
|
self.pointQ.x.to_bytes(modulus_bytes)) |
|
else: |
|
public_key = (b'\x04' + |
|
self.pointQ.x.to_bytes(modulus_bytes) + |
|
self.pointQ.y.to_bytes(modulus_bytes)) |
|
return public_key |
|
|
|
def _export_eddsa(self): |
|
x, y = self.pointQ.xy |
|
if self._curve.name == "ed25519": |
|
result = bytearray(y.to_bytes(32, byteorder='little')) |
|
result[31] = ((x & 1) << 7) | result[31] |
|
elif self._curve.name == "ed448": |
|
result = bytearray(y.to_bytes(57, byteorder='little')) |
|
result[56] = (x & 1) << 7 |
|
else: |
|
raise ValueError("Not an EdDSA key to export") |
|
return bytes(result) |
|
|
|
def _export_subjectPublicKeyInfo(self, compress): |
|
if self._is_eddsa(): |
|
oid = self._curve.oid |
|
public_key = self._export_eddsa() |
|
params = None |
|
else: |
|
oid = "1.2.840.10045.2.1" |
|
public_key = self._export_SEC1(compress) |
|
params = DerObjectId(self._curve.oid) |
|
|
|
return _create_subject_public_key_info(oid, |
|
public_key, |
|
params) |
|
|
|
def _export_rfc5915_private_der(self, include_ec_params=True): |
|
|
|
assert self.has_private() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modulus_bytes = self.pointQ.size_in_bytes() |
|
public_key = (b'\x04' + |
|
self.pointQ.x.to_bytes(modulus_bytes) + |
|
self.pointQ.y.to_bytes(modulus_bytes)) |
|
|
|
seq = [1, |
|
DerOctetString(self.d.to_bytes(modulus_bytes)), |
|
DerObjectId(self._curve.oid, explicit=0), |
|
DerBitString(public_key, explicit=1)] |
|
|
|
if not include_ec_params: |
|
del seq[2] |
|
|
|
return DerSequence(seq).encode() |
|
|
|
def _export_pkcs8(self, **kwargs): |
|
from Crypto.IO import PKCS8 |
|
|
|
if kwargs.get('passphrase', None) is not None and 'protection' not in kwargs: |
|
raise ValueError("At least the 'protection' parameter must be present") |
|
|
|
if self._is_eddsa(): |
|
oid = self._curve.oid |
|
private_key = DerOctetString(self._seed).encode() |
|
params = None |
|
else: |
|
oid = "1.2.840.10045.2.1" |
|
private_key = self._export_rfc5915_private_der(include_ec_params=False) |
|
params = DerObjectId(self._curve.oid) |
|
|
|
result = PKCS8.wrap(private_key, |
|
oid, |
|
key_params=params, |
|
**kwargs) |
|
return result |
|
|
|
def _export_public_pem(self, compress): |
|
from Crypto.IO import PEM |
|
|
|
encoded_der = self._export_subjectPublicKeyInfo(compress) |
|
return PEM.encode(encoded_der, "PUBLIC KEY") |
|
|
|
def _export_private_pem(self, passphrase, **kwargs): |
|
from Crypto.IO import PEM |
|
|
|
encoded_der = self._export_rfc5915_private_der() |
|
return PEM.encode(encoded_der, "EC PRIVATE KEY", passphrase, **kwargs) |
|
|
|
def _export_private_clear_pkcs8_in_clear_pem(self): |
|
from Crypto.IO import PEM |
|
|
|
encoded_der = self._export_pkcs8() |
|
return PEM.encode(encoded_der, "PRIVATE KEY") |
|
|
|
def _export_private_encrypted_pkcs8_in_clear_pem(self, passphrase, **kwargs): |
|
from Crypto.IO import PEM |
|
|
|
assert passphrase |
|
if 'protection' not in kwargs: |
|
raise ValueError("At least the 'protection' parameter should be present") |
|
encoded_der = self._export_pkcs8(passphrase=passphrase, **kwargs) |
|
return PEM.encode(encoded_der, "ENCRYPTED PRIVATE KEY") |
|
|
|
def _export_openssh(self, compress): |
|
if self.has_private(): |
|
raise ValueError("Cannot export OpenSSH private keys") |
|
|
|
desc = self._curve.openssh |
|
|
|
if desc is None: |
|
raise ValueError("Cannot export %s keys as OpenSSH" % self._curve.name) |
|
elif desc == "ssh-ed25519": |
|
public_key = self._export_eddsa() |
|
comps = (tobytes(desc), tobytes(public_key)) |
|
else: |
|
modulus_bytes = self.pointQ.size_in_bytes() |
|
|
|
if compress: |
|
first_byte = 2 + self.pointQ.y.is_odd() |
|
public_key = (bchr(first_byte) + |
|
self.pointQ.x.to_bytes(modulus_bytes)) |
|
else: |
|
public_key = (b'\x04' + |
|
self.pointQ.x.to_bytes(modulus_bytes) + |
|
self.pointQ.y.to_bytes(modulus_bytes)) |
|
|
|
middle = desc.split("-")[2] |
|
comps = (tobytes(desc), tobytes(middle), public_key) |
|
|
|
blob = b"".join([struct.pack(">I", len(x)) + x for x in comps]) |
|
return desc + " " + tostr(binascii.b2a_base64(blob)) |
|
|
|
def export_key(self, **kwargs): |
|
"""Export this ECC key. |
|
|
|
Args: |
|
format (string): |
|
The output format: |
|
|
|
- ``'DER'``. The key will be encoded in ASN.1 DER format (binary). |
|
For a public key, the ASN.1 ``subjectPublicKeyInfo`` structure |
|
defined in `RFC5480`_ will be used. |
|
For a private key, the ASN.1 ``ECPrivateKey`` structure defined |
|
in `RFC5915`_ is used instead (possibly within a PKCS#8 envelope, |
|
see the ``use_pkcs8`` flag below). |
|
- ``'PEM'``. The key will be encoded in a PEM_ envelope (ASCII). |
|
- ``'OpenSSH'``. The key will be encoded in the OpenSSH_ format |
|
(ASCII, public keys only). |
|
- ``'SEC1'``. The public key (i.e., the EC point) will be encoded |
|
into ``bytes`` according to Section 2.3.3 of `SEC1`_ |
|
(which is a subset of the older X9.62 ITU standard). |
|
Only for NIST P-curves. |
|
- ``'raw'``. The public key will be encoded as ``bytes``, |
|
without any metadata. |
|
|
|
* For NIST P-curves: equivalent to ``'SEC1'``. |
|
* For EdDSA curves: ``bytes`` in the format defined in `RFC8032`_. |
|
|
|
passphrase (bytes or string): |
|
(*Private keys only*) The passphrase to protect the |
|
private key. |
|
|
|
use_pkcs8 (boolean): |
|
(*Private keys only*) |
|
If ``True`` (default and recommended), the `PKCS#8`_ representation |
|
will be used. It must be ``True`` for EdDSA curves. |
|
|
|
If ``False`` and a passphrase is present, the obsolete PEM |
|
encryption will be used. |
|
|
|
protection (string): |
|
When a private key is exported with password-protection |
|
and PKCS#8 (both ``DER`` and ``PEM`` formats), this parameter MUST be |
|
present, |
|
For all possible protection schemes, |
|
refer to :ref:`the encryption parameters of PKCS#8<enc_params>`. |
|
It is recommended to use ``'PBKDF2WithHMAC-SHA5126AndAES128-CBC'``. |
|
|
|
compress (boolean): |
|
If ``True``, the method returns a more compact representation |
|
of the public key, with the X-coordinate only. |
|
|
|
If ``False`` (default), the method returns the full public key. |
|
|
|
This parameter is ignored for EdDSA curves, as compression is |
|
mandatory. |
|
|
|
prot_params (dict): |
|
When a private key is exported with password-protection |
|
and PKCS#8 (both ``DER`` and ``PEM`` formats), this dictionary |
|
contains the parameters to use to derive the encryption key |
|
from the passphrase. |
|
For all possible values, |
|
refer to :ref:`the encryption parameters of PKCS#8<enc_params>`. |
|
The recommendation is to use ``{'iteration_count':21000}`` for PBKDF2, |
|
and ``{'iteration_count':131072}`` for scrypt. |
|
|
|
.. warning:: |
|
If you don't provide a passphrase, the private key will be |
|
exported in the clear! |
|
|
|
.. note:: |
|
When exporting a private key with password-protection and `PKCS#8`_ |
|
(both ``DER`` and ``PEM`` formats), any extra parameters |
|
to ``export_key()`` will be passed to :mod:`Crypto.IO.PKCS8`. |
|
|
|
.. _PEM: http://www.ietf.org/rfc/rfc1421.txt |
|
.. _`PEM encryption`: http://www.ietf.org/rfc/rfc1423.txt |
|
.. _OpenSSH: http://www.openssh.com/txt/rfc5656.txt |
|
.. _RFC5480: https://tools.ietf.org/html/rfc5480 |
|
.. _SEC1: https://www.secg.org/sec1-v2.pdf |
|
|
|
Returns: |
|
A multi-line string (for ``'PEM'`` and ``'OpenSSH'``) or |
|
``bytes`` (for ``'DER'``, ``'SEC1'``, and ``'raw'``) with the encoded key. |
|
""" |
|
|
|
args = kwargs.copy() |
|
ext_format = args.pop("format") |
|
if ext_format not in ("PEM", "DER", "OpenSSH", "SEC1", "raw"): |
|
raise ValueError("Unknown format '%s'" % ext_format) |
|
|
|
compress = args.pop("compress", False) |
|
|
|
if self.has_private(): |
|
passphrase = args.pop("passphrase", None) |
|
if is_string(passphrase): |
|
passphrase = tobytes(passphrase) |
|
if not passphrase: |
|
raise ValueError("Empty passphrase") |
|
use_pkcs8 = args.pop("use_pkcs8", True) |
|
|
|
if not use_pkcs8: |
|
if self._is_eddsa(): |
|
raise ValueError("'pkcs8' must be True for EdDSA curves") |
|
if 'protection' in args: |
|
raise ValueError("'protection' is only supported for PKCS#8") |
|
|
|
if ext_format == "PEM": |
|
if use_pkcs8: |
|
if passphrase: |
|
return self._export_private_encrypted_pkcs8_in_clear_pem(passphrase, **args) |
|
else: |
|
return self._export_private_clear_pkcs8_in_clear_pem() |
|
else: |
|
return self._export_private_pem(passphrase, **args) |
|
elif ext_format == "DER": |
|
|
|
if passphrase and not use_pkcs8: |
|
raise ValueError("Private keys can only be encrpyted with DER using PKCS#8") |
|
if use_pkcs8: |
|
return self._export_pkcs8(passphrase=passphrase, **args) |
|
else: |
|
return self._export_rfc5915_private_der() |
|
else: |
|
raise ValueError("Private keys cannot be exported " |
|
"in the '%s' format" % ext_format) |
|
else: |
|
if args: |
|
raise ValueError("Unexpected parameters: '%s'" % args) |
|
if ext_format == "PEM": |
|
return self._export_public_pem(compress) |
|
elif ext_format == "DER": |
|
return self._export_subjectPublicKeyInfo(compress) |
|
elif ext_format == "SEC1": |
|
return self._export_SEC1(compress) |
|
elif ext_format == "raw": |
|
if self._curve.name in ('ed25519', 'ed448'): |
|
return self._export_eddsa() |
|
else: |
|
return self._export_SEC1(compress) |
|
else: |
|
return self._export_openssh(compress) |
|
|
|
|
|
def generate(**kwargs): |
|
"""Generate a new private key on the given curve. |
|
|
|
Args: |
|
|
|
curve (string): |
|
Mandatory. It must be a curve name defined in the `ECC table`_. |
|
|
|
randfunc (callable): |
|
Optional. The RNG to read randomness from. |
|
If ``None``, :func:`Crypto.Random.get_random_bytes` is used. |
|
""" |
|
|
|
curve_name = kwargs.pop("curve") |
|
curve = _curves[curve_name] |
|
randfunc = kwargs.pop("randfunc", get_random_bytes) |
|
if kwargs: |
|
raise TypeError("Unknown parameters: " + str(kwargs)) |
|
|
|
if _curves[curve_name].name == "ed25519": |
|
seed = randfunc(32) |
|
new_key = EccKey(curve=curve_name, seed=seed) |
|
elif _curves[curve_name].name == "ed448": |
|
seed = randfunc(57) |
|
new_key = EccKey(curve=curve_name, seed=seed) |
|
else: |
|
d = Integer.random_range(min_inclusive=1, |
|
max_exclusive=curve.order, |
|
randfunc=randfunc) |
|
new_key = EccKey(curve=curve_name, d=d) |
|
|
|
return new_key |
|
|
|
|
|
def construct(**kwargs): |
|
"""Build a new ECC key (private or public) starting |
|
from some base components. |
|
|
|
In most cases, you will already have an existing key |
|
which you can read in with :func:`import_key` instead |
|
of this function. |
|
|
|
Args: |
|
curve (string): |
|
Mandatory. The name of the elliptic curve, as defined in the `ECC table`_. |
|
|
|
d (integer): |
|
Mandatory for a private key and a NIST P-curve (e.g., P-256): |
|
the integer in the range ``[1..order-1]`` that represents the key. |
|
|
|
seed (bytes): |
|
Mandatory for a private key and an EdDSA curve. |
|
It must be 32 bytes for Ed25519, and 57 bytes for Ed448. |
|
|
|
point_x (integer): |
|
Mandatory for a public key: the X coordinate (affine) of the ECC point. |
|
|
|
point_y (integer): |
|
Mandatory for a public key: the Y coordinate (affine) of the ECC point. |
|
|
|
Returns: |
|
:class:`EccKey` : a new ECC key object |
|
""" |
|
|
|
curve_name = kwargs["curve"] |
|
curve = _curves[curve_name] |
|
point_x = kwargs.pop("point_x", None) |
|
point_y = kwargs.pop("point_y", None) |
|
|
|
if "point" in kwargs: |
|
raise TypeError("Unknown keyword: point") |
|
|
|
if None not in (point_x, point_y): |
|
|
|
kwargs["point"] = EccPoint(point_x, point_y, curve_name) |
|
|
|
new_key = EccKey(**kwargs) |
|
|
|
|
|
|
|
if new_key.has_private() and 'point' in kwargs: |
|
pub_key = curve.G * new_key.d |
|
if pub_key.xy != (point_x, point_y): |
|
raise ValueError("Private and public ECC keys do not match") |
|
|
|
return new_key |
|
|
|
|
|
def _import_public_der(ec_point, curve_oid=None, curve_name=None): |
|
"""Convert an encoded EC point into an EccKey object |
|
|
|
ec_point: byte string with the EC point (SEC1-encoded) |
|
curve_oid: string with the name the curve |
|
curve_name: string with the OID of the curve |
|
|
|
Either curve_id or curve_name must be specified |
|
|
|
""" |
|
|
|
for _curve_name, curve in _curves.items(): |
|
if curve_oid and curve.oid == curve_oid: |
|
break |
|
if curve_name == _curve_name: |
|
break |
|
else: |
|
if curve_oid: |
|
raise UnsupportedEccFeature("Unsupported ECC curve (OID: %s)" % curve_oid) |
|
else: |
|
raise UnsupportedEccFeature("Unsupported ECC curve (%s)" % curve_name) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modulus_bytes = curve.p.size_in_bytes() |
|
point_type = bord(ec_point[0]) |
|
|
|
|
|
if point_type == 0x04: |
|
if len(ec_point) != (1 + 2 * modulus_bytes): |
|
raise ValueError("Incorrect EC point length") |
|
x = Integer.from_bytes(ec_point[1:modulus_bytes+1]) |
|
y = Integer.from_bytes(ec_point[modulus_bytes+1:]) |
|
|
|
elif point_type in (0x02, 0x03): |
|
if len(ec_point) != (1 + modulus_bytes): |
|
raise ValueError("Incorrect EC point length") |
|
x = Integer.from_bytes(ec_point[1:]) |
|
|
|
y = (x**3 - x*3 + curve.b).sqrt(curve.p) |
|
if point_type == 0x02 and y.is_odd(): |
|
y = curve.p - y |
|
if point_type == 0x03 and y.is_even(): |
|
y = curve.p - y |
|
else: |
|
raise ValueError("Incorrect EC point encoding") |
|
|
|
return construct(curve=_curve_name, point_x=x, point_y=y) |
|
|
|
|
|
def _import_subjectPublicKeyInfo(encoded, *kwargs): |
|
"""Convert a subjectPublicKeyInfo into an EccKey object""" |
|
|
|
|
|
|
|
|
|
oid, ec_point, params = _expand_subject_public_key_info(encoded) |
|
|
|
nist_p_oids = ( |
|
"1.2.840.10045.2.1", |
|
"1.3.132.1.12", |
|
"1.3.132.1.13" |
|
) |
|
eddsa_oids = { |
|
"1.3.101.112": ("Ed25519", _import_ed25519_public_key), |
|
"1.3.101.113": ("Ed448", _import_ed448_public_key) |
|
} |
|
|
|
if oid in nist_p_oids: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not params: |
|
raise ValueError("Missing ECC parameters for ECC OID %s" % oid) |
|
try: |
|
curve_oid = DerObjectId().decode(params).value |
|
except ValueError: |
|
raise ValueError("Error decoding namedCurve") |
|
|
|
|
|
return _import_public_der(ec_point, curve_oid=curve_oid) |
|
|
|
elif oid in eddsa_oids: |
|
|
|
curve_name, import_eddsa_public_key = eddsa_oids[oid] |
|
|
|
|
|
if params: |
|
raise ValueError("Unexpected ECC parameters for ECC OID %s" % oid) |
|
|
|
x, y = import_eddsa_public_key(ec_point) |
|
return construct(point_x=x, point_y=y, curve=curve_name) |
|
else: |
|
raise UnsupportedEccFeature("Unsupported ECC OID: %s" % oid) |
|
|
|
|
|
def _import_rfc5915_der(encoded, passphrase, curve_oid=None): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
private_key = DerSequence().decode(encoded, nr_elements=(3, 4)) |
|
if private_key[0] != 1: |
|
raise ValueError("Incorrect ECC private key version") |
|
|
|
try: |
|
parameters = DerObjectId(explicit=0).decode(private_key[2]).value |
|
if curve_oid is not None and parameters != curve_oid: |
|
raise ValueError("Curve mismatch") |
|
curve_oid = parameters |
|
except ValueError: |
|
pass |
|
|
|
if curve_oid is None: |
|
raise ValueError("No curve found") |
|
|
|
for curve_name, curve in _curves.items(): |
|
if curve.oid == curve_oid: |
|
break |
|
else: |
|
raise UnsupportedEccFeature("Unsupported ECC curve (OID: %s)" % curve_oid) |
|
|
|
scalar_bytes = DerOctetString().decode(private_key[1]).payload |
|
modulus_bytes = curve.p.size_in_bytes() |
|
if len(scalar_bytes) != modulus_bytes: |
|
raise ValueError("Private key is too small") |
|
d = Integer.from_bytes(scalar_bytes) |
|
|
|
|
|
if len(private_key) > 2: |
|
public_key_enc = DerBitString(explicit=1).decode(private_key[-1]).value |
|
public_key = _import_public_der(public_key_enc, curve_oid=curve_oid) |
|
point_x = public_key.pointQ.x |
|
point_y = public_key.pointQ.y |
|
else: |
|
point_x = point_y = None |
|
|
|
return construct(curve=curve_name, d=d, point_x=point_x, point_y=point_y) |
|
|
|
|
|
def _import_pkcs8(encoded, passphrase): |
|
from Crypto.IO import PKCS8 |
|
|
|
algo_oid, private_key, params = PKCS8.unwrap(encoded, passphrase) |
|
|
|
nist_p_oids = ( |
|
"1.2.840.10045.2.1", |
|
"1.3.132.1.12", |
|
"1.3.132.1.13" |
|
) |
|
eddsa_oids = { |
|
"1.3.101.112": "Ed25519", |
|
"1.3.101.113": "Ed448", |
|
} |
|
|
|
if algo_oid in nist_p_oids: |
|
curve_oid = DerObjectId().decode(params).value |
|
return _import_rfc5915_der(private_key, passphrase, curve_oid) |
|
elif algo_oid in eddsa_oids: |
|
if params is not None: |
|
raise ValueError("EdDSA ECC private key must not have parameters") |
|
curve_oid = None |
|
seed = DerOctetString().decode(private_key).payload |
|
return construct(curve=eddsa_oids[algo_oid], seed=seed) |
|
else: |
|
raise UnsupportedEccFeature("Unsupported ECC purpose (OID: %s)" % algo_oid) |
|
|
|
|
|
def _import_x509_cert(encoded, *kwargs): |
|
|
|
sp_info = _extract_subject_public_key_info(encoded) |
|
return _import_subjectPublicKeyInfo(sp_info) |
|
|
|
|
|
def _import_der(encoded, passphrase): |
|
|
|
try: |
|
return _import_subjectPublicKeyInfo(encoded, passphrase) |
|
except UnsupportedEccFeature as err: |
|
raise err |
|
except (ValueError, TypeError, IndexError): |
|
pass |
|
|
|
try: |
|
return _import_x509_cert(encoded, passphrase) |
|
except UnsupportedEccFeature as err: |
|
raise err |
|
except (ValueError, TypeError, IndexError): |
|
pass |
|
|
|
try: |
|
return _import_rfc5915_der(encoded, passphrase) |
|
except UnsupportedEccFeature as err: |
|
raise err |
|
except (ValueError, TypeError, IndexError): |
|
pass |
|
|
|
try: |
|
return _import_pkcs8(encoded, passphrase) |
|
except UnsupportedEccFeature as err: |
|
raise err |
|
except (ValueError, TypeError, IndexError): |
|
pass |
|
|
|
raise ValueError("Not an ECC DER key") |
|
|
|
|
|
def _import_openssh_public(encoded): |
|
parts = encoded.split(b' ') |
|
if len(parts) not in (2, 3): |
|
raise ValueError("Not an openssh public key") |
|
|
|
try: |
|
keystring = binascii.a2b_base64(parts[1]) |
|
|
|
keyparts = [] |
|
while len(keystring) > 4: |
|
lk = struct.unpack(">I", keystring[:4])[0] |
|
keyparts.append(keystring[4:4 + lk]) |
|
keystring = keystring[4 + lk:] |
|
|
|
if parts[0] != keyparts[0]: |
|
raise ValueError("Mismatch in openssh public key") |
|
|
|
|
|
if parts[0].startswith(b"ecdsa-sha2-"): |
|
|
|
for curve_name, curve in _curves.items(): |
|
if curve.openssh is None: |
|
continue |
|
if not curve.openssh.startswith("ecdsa-sha2"): |
|
continue |
|
middle = tobytes(curve.openssh.split("-")[2]) |
|
if keyparts[1] == middle: |
|
break |
|
else: |
|
raise ValueError("Unsupported ECC curve: " + middle) |
|
|
|
ecc_key = _import_public_der(keyparts[2], curve_oid=curve.oid) |
|
|
|
|
|
elif parts[0] == b"ssh-ed25519": |
|
x, y = _import_ed25519_public_key(keyparts[1]) |
|
ecc_key = construct(curve="Ed25519", point_x=x, point_y=y) |
|
else: |
|
raise ValueError("Unsupported SSH key type: " + parts[0]) |
|
|
|
except (IndexError, TypeError, binascii.Error): |
|
raise ValueError("Error parsing SSH key type: " + parts[0]) |
|
|
|
return ecc_key |
|
|
|
|
|
def _import_openssh_private_ecc(data, password): |
|
|
|
from ._openssh import (import_openssh_private_generic, |
|
read_bytes, read_string, check_padding) |
|
|
|
key_type, decrypted = import_openssh_private_generic(data, password) |
|
|
|
eddsa_keys = { |
|
"ssh-ed25519": ("Ed25519", _import_ed25519_public_key, 32), |
|
} |
|
|
|
|
|
if key_type.startswith("ecdsa-sha2"): |
|
|
|
ecdsa_curve_name, decrypted = read_string(decrypted) |
|
if ecdsa_curve_name not in _curves: |
|
raise UnsupportedEccFeature("Unsupported ECC curve %s" % ecdsa_curve_name) |
|
curve = _curves[ecdsa_curve_name] |
|
modulus_bytes = (curve.modulus_bits + 7) // 8 |
|
|
|
public_key, decrypted = read_bytes(decrypted) |
|
|
|
if bord(public_key[0]) != 4: |
|
raise ValueError("Only uncompressed OpenSSH EC keys are supported") |
|
if len(public_key) != 2 * modulus_bytes + 1: |
|
raise ValueError("Incorrect public key length") |
|
|
|
point_x = Integer.from_bytes(public_key[1:1+modulus_bytes]) |
|
point_y = Integer.from_bytes(public_key[1+modulus_bytes:]) |
|
|
|
private_key, decrypted = read_bytes(decrypted) |
|
d = Integer.from_bytes(private_key) |
|
|
|
params = {'d': d, 'curve': ecdsa_curve_name} |
|
|
|
elif key_type in eddsa_keys: |
|
|
|
curve_name, import_eddsa_public_key, seed_len = eddsa_keys[key_type] |
|
|
|
public_key, decrypted = read_bytes(decrypted) |
|
point_x, point_y = import_eddsa_public_key(public_key) |
|
|
|
private_public_key, decrypted = read_bytes(decrypted) |
|
seed = private_public_key[:seed_len] |
|
|
|
params = {'seed': seed, 'curve': curve_name} |
|
else: |
|
raise ValueError("Unsupport SSH agent key type:" + key_type) |
|
|
|
_, padded = read_string(decrypted) |
|
check_padding(padded) |
|
|
|
return construct(point_x=point_x, point_y=point_y, **params) |
|
|
|
|
|
def _import_ed25519_public_key(encoded): |
|
"""Import an Ed25519 ECC public key, encoded as raw bytes as described |
|
in RFC8032_. |
|
|
|
Args: |
|
encoded (bytes): |
|
The Ed25519 public key to import. It must be 32 bytes long. |
|
|
|
Returns: |
|
:class:`EccKey` : a new ECC key object |
|
|
|
Raises: |
|
ValueError: when the given key cannot be parsed. |
|
|
|
.. _RFC8032: https://datatracker.ietf.org/doc/html/rfc8032 |
|
""" |
|
|
|
if len(encoded) != 32: |
|
raise ValueError("Incorrect length. Only Ed25519 public keys are supported.") |
|
|
|
p = Integer(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed) |
|
d = 37095705934669439343138083508754565189542113879843219016388785533085940283555 |
|
|
|
y = bytearray(encoded) |
|
x_lsb = y[31] >> 7 |
|
y[31] &= 0x7F |
|
point_y = Integer.from_bytes(y, byteorder='little') |
|
if point_y >= p: |
|
raise ValueError("Invalid Ed25519 key (y)") |
|
if point_y == 1: |
|
return 0, 1 |
|
|
|
u = (point_y**2 - 1) % p |
|
v = ((point_y**2 % p) * d + 1) % p |
|
try: |
|
v_inv = v.inverse(p) |
|
x2 = (u * v_inv) % p |
|
point_x = Integer._tonelli_shanks(x2, p) |
|
if (point_x & 1) != x_lsb: |
|
point_x = p - point_x |
|
except ValueError: |
|
raise ValueError("Invalid Ed25519 public key") |
|
return point_x, point_y |
|
|
|
|
|
def _import_ed448_public_key(encoded): |
|
"""Import an Ed448 ECC public key, encoded as raw bytes as described |
|
in RFC8032_. |
|
|
|
Args: |
|
encoded (bytes): |
|
The Ed448 public key to import. It must be 57 bytes long. |
|
|
|
Returns: |
|
:class:`EccKey` : a new ECC key object |
|
|
|
Raises: |
|
ValueError: when the given key cannot be parsed. |
|
|
|
.. _RFC8032: https://datatracker.ietf.org/doc/html/rfc8032 |
|
""" |
|
|
|
if len(encoded) != 57: |
|
raise ValueError("Incorrect length. Only Ed448 public keys are supported.") |
|
|
|
p = Integer(0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffffff) |
|
d = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffff6756 |
|
|
|
y = encoded[:56] |
|
x_lsb = bord(encoded[56]) >> 7 |
|
point_y = Integer.from_bytes(y, byteorder='little') |
|
if point_y >= p: |
|
raise ValueError("Invalid Ed448 key (y)") |
|
if point_y == 1: |
|
return 0, 1 |
|
|
|
u = (point_y**2 - 1) % p |
|
v = ((point_y**2 % p) * d - 1) % p |
|
try: |
|
v_inv = v.inverse(p) |
|
x2 = (u * v_inv) % p |
|
point_x = Integer._tonelli_shanks(x2, p) |
|
if (point_x & 1) != x_lsb: |
|
point_x = p - point_x |
|
except ValueError: |
|
raise ValueError("Invalid Ed448 public key") |
|
return point_x, point_y |
|
|
|
|
|
def import_key(encoded, passphrase=None, curve_name=None): |
|
"""Import an ECC key (public or private). |
|
|
|
Args: |
|
encoded (bytes or multi-line string): |
|
The ECC key to import. |
|
The function will try to automatically detect the right format. |
|
|
|
Supported formats for an ECC **public** key: |
|
|
|
* X.509 certificate: binary (DER) or ASCII (PEM). |
|
* X.509 ``subjectPublicKeyInfo``: binary (DER) or ASCII (PEM). |
|
* SEC1_ (or X9.62), as ``bytes``. NIST P curves only. |
|
You must also provide the ``curve_name`` (with a value from the `ECC table`_) |
|
* OpenSSH line, defined in RFC5656_ and RFC8709_ (ASCII). |
|
This is normally the content of files like ``~/.ssh/id_ecdsa.pub``. |
|
|
|
Supported formats for an ECC **private** key: |
|
|
|
* A binary ``ECPrivateKey`` structure, as defined in `RFC5915`_ (DER). |
|
NIST P curves only. |
|
* A `PKCS#8`_ structure (or the more recent Asymmetric Key Package, RFC5958_): binary (DER) or ASCII (PEM). |
|
* `OpenSSH 6.5`_ and newer versions (ASCII). |
|
|
|
Private keys can be in the clear or password-protected. |
|
|
|
For details about the PEM encoding, see `RFC1421`_/`RFC1423`_. |
|
|
|
passphrase (byte string): |
|
The passphrase to use for decrypting a private key. |
|
Encryption may be applied protected at the PEM level (not recommended) |
|
or at the PKCS#8 level (recommended). |
|
This parameter is ignored if the key in input is not encrypted. |
|
|
|
curve_name (string): |
|
For a SEC1 encoding only. This is the name of the curve, |
|
as defined in the `ECC table`_. |
|
|
|
.. note:: |
|
|
|
To import EdDSA private and public keys, when encoded as raw ``bytes``, use: |
|
|
|
* :func:`Crypto.Signature.eddsa.import_public_key`, or |
|
* :func:`Crypto.Signature.eddsa.import_private_key`. |
|
|
|
Returns: |
|
:class:`EccKey` : a new ECC key object |
|
|
|
Raises: |
|
ValueError: when the given key cannot be parsed (possibly because |
|
the pass phrase is wrong). |
|
|
|
.. _RFC1421: https://datatracker.ietf.org/doc/html/rfc1421 |
|
.. _RFC1423: https://datatracker.ietf.org/doc/html/rfc1423 |
|
.. _RFC5915: https://datatracker.ietf.org/doc/html/rfc5915 |
|
.. _RFC5656: https://datatracker.ietf.org/doc/html/rfc5656 |
|
.. _RFC8709: https://datatracker.ietf.org/doc/html/rfc8709 |
|
.. _RFC5958: https://datatracker.ietf.org/doc/html/rfc5958 |
|
.. _`PKCS#8`: https://datatracker.ietf.org/doc/html/rfc5208 |
|
.. _`OpenSSH 6.5`: https://flak.tedunangst.com/post/new-openssh-key-format-and-bcrypt-pbkdf |
|
.. _SEC1: https://www.secg.org/sec1-v2.pdf |
|
""" |
|
|
|
from Crypto.IO import PEM |
|
|
|
encoded = tobytes(encoded) |
|
if passphrase is not None: |
|
passphrase = tobytes(passphrase) |
|
|
|
|
|
if encoded.startswith(b'-----BEGIN OPENSSH PRIVATE KEY'): |
|
text_encoded = tostr(encoded) |
|
openssh_encoded, marker, enc_flag = PEM.decode(text_encoded, passphrase) |
|
result = _import_openssh_private_ecc(openssh_encoded, passphrase) |
|
return result |
|
|
|
elif encoded.startswith(b'-----'): |
|
|
|
text_encoded = tostr(encoded) |
|
|
|
|
|
|
|
ecparams_start = "-----BEGIN EC PARAMETERS-----" |
|
ecparams_end = "-----END EC PARAMETERS-----" |
|
text_encoded = re.sub(ecparams_start + ".*?" + ecparams_end, "", |
|
text_encoded, |
|
flags=re.DOTALL) |
|
|
|
der_encoded, marker, enc_flag = PEM.decode(text_encoded, passphrase) |
|
if enc_flag: |
|
passphrase = None |
|
try: |
|
result = _import_der(der_encoded, passphrase) |
|
except UnsupportedEccFeature as uef: |
|
raise uef |
|
except ValueError: |
|
raise ValueError("Invalid DER encoding inside the PEM file") |
|
return result |
|
|
|
|
|
if encoded.startswith((b'ecdsa-sha2-', b'ssh-ed25519')): |
|
return _import_openssh_public(encoded) |
|
|
|
|
|
if len(encoded) > 0 and bord(encoded[0]) == 0x30: |
|
return _import_der(encoded, passphrase) |
|
|
|
|
|
if len(encoded) > 0 and bord(encoded[0]) in (0x02, 0x03, 0x04): |
|
if curve_name is None: |
|
raise ValueError("No curve name was provided") |
|
return _import_public_der(encoded, curve_name=curve_name) |
|
|
|
raise ValueError("ECC key format is not supported") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
import time |
|
|
|
d = 0xc51e4753afdec1e6b6c6a5b992f43f8dd0c7a8933072708b6522468b2ffb06fd |
|
|
|
point = _curves['p256'].G.copy() |
|
count = 3000 |
|
|
|
start = time.time() |
|
for x in range(count): |
|
pointX = point * d |
|
print("(P-256 G)", (time.time() - start) / count * 1000, "ms") |
|
|
|
start = time.time() |
|
for x in range(count): |
|
pointX = pointX * d |
|
print("(P-256 arbitrary point)", (time.time() - start) / count * 1000, "ms") |
|
|