|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__all__ = ['generate', 'construct', 'import_key', |
|
'RsaKey', 'oid'] |
|
|
|
import binascii |
|
import struct |
|
|
|
from Crypto import Random |
|
from Crypto.Util.py3compat import tobytes, bord, tostr |
|
from Crypto.Util.asn1 import DerSequence, DerNull |
|
from Crypto.Util.number import bytes_to_long |
|
|
|
from Crypto.Math.Numbers import Integer |
|
from Crypto.Math.Primality import (test_probable_prime, |
|
generate_probable_prime, COMPOSITE) |
|
|
|
from Crypto.PublicKey import (_expand_subject_public_key_info, |
|
_create_subject_public_key_info, |
|
_extract_subject_public_key_info) |
|
|
|
|
|
class RsaKey(object): |
|
r"""Class defining an RSA key, private or public. |
|
Do not instantiate directly. |
|
Use :func:`generate`, :func:`construct` or :func:`import_key` instead. |
|
|
|
:ivar n: RSA modulus |
|
:vartype n: integer |
|
|
|
:ivar e: RSA public exponent |
|
:vartype e: integer |
|
|
|
:ivar d: RSA private exponent |
|
:vartype d: integer |
|
|
|
:ivar p: First factor of the RSA modulus |
|
:vartype p: integer |
|
|
|
:ivar q: Second factor of the RSA modulus |
|
:vartype q: integer |
|
|
|
:ivar invp: Chinese remainder component (:math:`p^{-1} \text{mod } q`) |
|
:vartype invp: integer |
|
|
|
:ivar invq: Chinese remainder component (:math:`q^{-1} \text{mod } p`) |
|
:vartype invq: integer |
|
|
|
:ivar u: Same as ``invp`` |
|
:vartype u: integer |
|
""" |
|
|
|
def __init__(self, **kwargs): |
|
"""Build an RSA key. |
|
|
|
:Keywords: |
|
n : integer |
|
The modulus. |
|
e : integer |
|
The public exponent. |
|
d : integer |
|
The private exponent. Only required for private keys. |
|
p : integer |
|
The first factor of the modulus. Only required for private keys. |
|
q : integer |
|
The second factor of the modulus. Only required for private keys. |
|
u : integer |
|
The CRT coefficient (inverse of p modulo q). Only required for |
|
private keys. |
|
""" |
|
|
|
input_set = set(kwargs.keys()) |
|
public_set = set(('n', 'e')) |
|
private_set = public_set | set(('p', 'q', 'd', 'u')) |
|
if input_set not in (private_set, public_set): |
|
raise ValueError("Some RSA components are missing") |
|
for component, value in kwargs.items(): |
|
setattr(self, "_" + component, value) |
|
if input_set == private_set: |
|
self._dp = self._d % (self._p - 1) |
|
self._dq = self._d % (self._q - 1) |
|
self._invq = None |
|
|
|
@property |
|
def n(self): |
|
return int(self._n) |
|
|
|
@property |
|
def e(self): |
|
return int(self._e) |
|
|
|
@property |
|
def d(self): |
|
if not self.has_private(): |
|
raise AttributeError("No private exponent available for public keys") |
|
return int(self._d) |
|
|
|
@property |
|
def p(self): |
|
if not self.has_private(): |
|
raise AttributeError("No CRT component 'p' available for public keys") |
|
return int(self._p) |
|
|
|
@property |
|
def q(self): |
|
if not self.has_private(): |
|
raise AttributeError("No CRT component 'q' available for public keys") |
|
return int(self._q) |
|
|
|
@property |
|
def dp(self): |
|
if not self.has_private(): |
|
raise AttributeError("No CRT component 'dp' available for public keys") |
|
return int(self._dp) |
|
|
|
@property |
|
def dq(self): |
|
if not self.has_private(): |
|
raise AttributeError("No CRT component 'dq' available for public keys") |
|
return int(self._dq) |
|
|
|
@property |
|
def invq(self): |
|
if not self.has_private(): |
|
raise AttributeError("No CRT component 'invq' available for public keys") |
|
if self._invq is None: |
|
self._invq = self._q.inverse(self._p) |
|
return int(self._invq) |
|
|
|
@property |
|
def invp(self): |
|
return self.u |
|
|
|
@property |
|
def u(self): |
|
if not self.has_private(): |
|
raise AttributeError("No CRT component 'u' available for public keys") |
|
return int(self._u) |
|
|
|
def size_in_bits(self): |
|
"""Size of the RSA modulus in bits""" |
|
return self._n.size_in_bits() |
|
|
|
def size_in_bytes(self): |
|
"""The minimal amount of bytes that can hold the RSA modulus""" |
|
return (self._n.size_in_bits() - 1) // 8 + 1 |
|
|
|
def _encrypt(self, plaintext): |
|
if not 0 <= plaintext < self._n: |
|
raise ValueError("Plaintext too large") |
|
return int(pow(Integer(plaintext), self._e, self._n)) |
|
|
|
def _decrypt_to_bytes(self, ciphertext): |
|
if not 0 <= ciphertext < self._n: |
|
raise ValueError("Ciphertext too large") |
|
if not self.has_private(): |
|
raise TypeError("This is not a private key") |
|
|
|
|
|
|
|
|
|
r = Integer.random_range(min_inclusive=1, max_exclusive=self._n) |
|
|
|
cp = Integer(ciphertext) * pow(r, self._e, self._n) % self._n |
|
|
|
m1 = pow(cp, self._dp, self._p) |
|
m2 = pow(cp, self._dq, self._q) |
|
h = ((m2 - m1) * self._u) % self._q |
|
mp = h * self._p + m1 |
|
|
|
|
|
result = Integer._mult_modulo_bytes( |
|
r.inverse(self._n), |
|
mp, |
|
self._n) |
|
return result |
|
|
|
def _decrypt(self, ciphertext): |
|
"""Legacy private method""" |
|
|
|
return bytes_to_long(self._decrypt_to_bytes(ciphertext)) |
|
|
|
def has_private(self): |
|
"""Whether this is an RSA private key""" |
|
|
|
return hasattr(self, "_d") |
|
|
|
def can_encrypt(self): |
|
return True |
|
|
|
def can_sign(self): |
|
return True |
|
|
|
def public_key(self): |
|
"""A matching RSA public key. |
|
|
|
Returns: |
|
a new :class:`RsaKey` object |
|
""" |
|
return RsaKey(n=self._n, e=self._e) |
|
|
|
def __eq__(self, other): |
|
if self.has_private() != other.has_private(): |
|
return False |
|
if self.n != other.n or self.e != other.e: |
|
return False |
|
if not self.has_private(): |
|
return True |
|
return (self.d == other.d) |
|
|
|
def __ne__(self, other): |
|
return not (self == other) |
|
|
|
def __getstate__(self): |
|
|
|
from pickle import PicklingError |
|
raise PicklingError |
|
|
|
def __repr__(self): |
|
if self.has_private(): |
|
extra = ", d=%d, p=%d, q=%d, u=%d" % (int(self._d), int(self._p), |
|
int(self._q), int(self._u)) |
|
else: |
|
extra = "" |
|
return "RsaKey(n=%d, e=%d%s)" % (int(self._n), int(self._e), extra) |
|
|
|
def __str__(self): |
|
if self.has_private(): |
|
key_type = "Private" |
|
else: |
|
key_type = "Public" |
|
return "%s RSA key at 0x%X" % (key_type, id(self)) |
|
|
|
def export_key(self, format='PEM', passphrase=None, pkcs=1, |
|
protection=None, randfunc=None, prot_params=None): |
|
"""Export this RSA key. |
|
|
|
Keyword Args: |
|
format (string): |
|
The desired output format: |
|
|
|
- ``'PEM'``. (default) Text output, according to `RFC1421`_/`RFC1423`_. |
|
- ``'DER'``. Binary output. |
|
- ``'OpenSSH'``. Text output, according to the OpenSSH specification. |
|
Only suitable for public keys (not private keys). |
|
|
|
Note that PEM contains a DER structure. |
|
|
|
passphrase (bytes or string): |
|
(*Private keys only*) The passphrase to protect the |
|
private key. |
|
|
|
pkcs (integer): |
|
(*Private keys only*) The standard to use for |
|
serializing the key: PKCS#1 or PKCS#8. |
|
|
|
With ``pkcs=1`` (*default*), the private key is encoded with a |
|
simple `PKCS#1`_ structure (``RSAPrivateKey``). The key cannot be |
|
securely encrypted. |
|
|
|
With ``pkcs=8``, the private key is encoded with a `PKCS#8`_ structure |
|
(``PrivateKeyInfo``). PKCS#8 offers the best ways to securely |
|
encrypt the key. |
|
|
|
.. note:: |
|
This parameter is ignored for a public key. |
|
For DER and PEM, the output is always an |
|
ASN.1 DER ``SubjectPublicKeyInfo`` structure. |
|
|
|
protection (string): |
|
(*For private keys only*) |
|
The encryption scheme to use for protecting the private key |
|
using the passphrase. |
|
|
|
You can only specify a value if ``pkcs=8``. |
|
For all possible protection schemes, |
|
refer to :ref:`the encryption parameters of PKCS#8<enc_params>`. |
|
The recommended value is |
|
``'PBKDF2WithHMAC-SHA512AndAES256-CBC'``. |
|
|
|
If ``None`` (default), the behavior depends on :attr:`format`: |
|
|
|
- if ``format='PEM'``, the obsolete PEM encryption scheme is used. |
|
It is based on MD5 for key derivation, and 3DES for encryption. |
|
|
|
- if ``format='DER'``, the ``'PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC'`` |
|
scheme is used. |
|
|
|
prot_params (dict): |
|
(*For private keys only*) |
|
|
|
The parameters to use to derive the encryption key |
|
from the passphrase. ``'protection'`` must be also specified. |
|
For all possible values, |
|
refer to :ref:`the encryption parameters of PKCS#8<enc_params>`. |
|
The recommendation is to use ``{'iteration_count':21000}`` for PBKDF2, |
|
and ``{'iteration_count':131072}`` for scrypt. |
|
|
|
randfunc (callable): |
|
A function that provides random bytes. Only used for PEM encoding. |
|
The default is :func:`Crypto.Random.get_random_bytes`. |
|
|
|
Returns: |
|
bytes: the encoded key |
|
|
|
Raises: |
|
ValueError:when the format is unknown or when you try to encrypt a private |
|
key with *DER* format and PKCS#1. |
|
|
|
.. warning:: |
|
If you don't provide a pass phrase, the private key will be |
|
exported in the clear! |
|
|
|
.. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt |
|
.. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt |
|
.. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt |
|
.. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt |
|
""" |
|
|
|
if passphrase is not None: |
|
passphrase = tobytes(passphrase) |
|
|
|
if randfunc is None: |
|
randfunc = Random.get_random_bytes |
|
|
|
if format == 'OpenSSH': |
|
e_bytes, n_bytes = [x.to_bytes() for x in (self._e, self._n)] |
|
if bord(e_bytes[0]) & 0x80: |
|
e_bytes = b'\x00' + e_bytes |
|
if bord(n_bytes[0]) & 0x80: |
|
n_bytes = b'\x00' + n_bytes |
|
keyparts = [b'ssh-rsa', e_bytes, n_bytes] |
|
keystring = b''.join([struct.pack(">I", len(kp)) + kp for kp in keyparts]) |
|
return b'ssh-rsa ' + binascii.b2a_base64(keystring)[:-1] |
|
|
|
|
|
|
|
if self.has_private(): |
|
binary_key = DerSequence([0, |
|
self.n, |
|
self.e, |
|
self.d, |
|
self.p, |
|
self.q, |
|
self.d % (self.p-1), |
|
self.d % (self.q-1), |
|
Integer(self.q).inverse(self.p) |
|
]).encode() |
|
if pkcs == 1: |
|
key_type = 'RSA PRIVATE KEY' |
|
if format == 'DER' and passphrase: |
|
raise ValueError("PKCS#1 private key cannot be encrypted") |
|
else: |
|
from Crypto.IO import PKCS8 |
|
|
|
if format == 'PEM' and protection is None: |
|
key_type = 'PRIVATE KEY' |
|
binary_key = PKCS8.wrap(binary_key, oid, None, |
|
key_params=DerNull()) |
|
else: |
|
key_type = 'ENCRYPTED PRIVATE KEY' |
|
if not protection: |
|
if prot_params: |
|
raise ValueError("'protection' parameter must be set") |
|
protection = 'PBKDF2WithHMAC-SHA1AndDES-EDE3-CBC' |
|
binary_key = PKCS8.wrap(binary_key, oid, |
|
passphrase, protection, |
|
prot_params=prot_params, |
|
key_params=DerNull()) |
|
passphrase = None |
|
else: |
|
key_type = "PUBLIC KEY" |
|
binary_key = _create_subject_public_key_info(oid, |
|
DerSequence([self.n, |
|
self.e]), |
|
DerNull() |
|
) |
|
|
|
if format == 'DER': |
|
return binary_key |
|
if format == 'PEM': |
|
from Crypto.IO import PEM |
|
|
|
pem_str = PEM.encode(binary_key, key_type, passphrase, randfunc) |
|
return tobytes(pem_str) |
|
|
|
raise ValueError("Unknown key format '%s'. Cannot export the RSA key." % format) |
|
|
|
|
|
def exportKey(self, *args, **kwargs): |
|
""":meta private:""" |
|
return self.export_key(*args, **kwargs) |
|
|
|
def publickey(self): |
|
""":meta private:""" |
|
return self.public_key() |
|
|
|
|
|
def sign(self, M, K): |
|
""":meta private:""" |
|
raise NotImplementedError("Use module Crypto.Signature.pkcs1_15 instead") |
|
|
|
def verify(self, M, signature): |
|
""":meta private:""" |
|
raise NotImplementedError("Use module Crypto.Signature.pkcs1_15 instead") |
|
|
|
def encrypt(self, plaintext, K): |
|
""":meta private:""" |
|
raise NotImplementedError("Use module Crypto.Cipher.PKCS1_OAEP instead") |
|
|
|
def decrypt(self, ciphertext): |
|
""":meta private:""" |
|
raise NotImplementedError("Use module Crypto.Cipher.PKCS1_OAEP instead") |
|
|
|
def blind(self, M, B): |
|
""":meta private:""" |
|
raise NotImplementedError |
|
|
|
def unblind(self, M, B): |
|
""":meta private:""" |
|
raise NotImplementedError |
|
|
|
def size(self): |
|
""":meta private:""" |
|
raise NotImplementedError |
|
|
|
|
|
def generate(bits, randfunc=None, e=65537): |
|
"""Create a new RSA key pair. |
|
|
|
The algorithm closely follows NIST `FIPS 186-4`_ in its |
|
sections B.3.1 and B.3.3. The modulus is the product of |
|
two non-strong probable primes. |
|
Each prime passes a suitable number of Miller-Rabin tests |
|
with random bases and a single Lucas test. |
|
|
|
Args: |
|
bits (integer): |
|
Key length, or size (in bits) of the RSA modulus. |
|
It must be at least 1024, but **2048 is recommended.** |
|
The FIPS standard only defines 1024, 2048 and 3072. |
|
Keyword Args: |
|
randfunc (callable): |
|
Function that returns random bytes. |
|
The default is :func:`Crypto.Random.get_random_bytes`. |
|
e (integer): |
|
Public RSA exponent. It must be an odd positive integer. |
|
It is typically a small number with very few ones in its |
|
binary representation. |
|
The FIPS standard requires the public exponent to be |
|
at least 65537 (the default). |
|
|
|
Returns: an RSA key object (:class:`RsaKey`, with private key). |
|
|
|
.. _FIPS 186-4: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf |
|
""" |
|
|
|
if bits < 1024: |
|
raise ValueError("RSA modulus length must be >= 1024") |
|
if e % 2 == 0 or e < 3: |
|
raise ValueError("RSA public exponent must be a positive, odd integer larger than 2.") |
|
|
|
if randfunc is None: |
|
randfunc = Random.get_random_bytes |
|
|
|
d = n = Integer(1) |
|
e = Integer(e) |
|
|
|
while n.size_in_bits() != bits and d < (1 << (bits // 2)): |
|
|
|
|
|
|
|
size_q = bits // 2 |
|
size_p = bits - size_q |
|
|
|
min_p = min_q = (Integer(1) << (2 * size_q - 1)).sqrt() |
|
if size_q != size_p: |
|
min_p = (Integer(1) << (2 * size_p - 1)).sqrt() |
|
|
|
def filter_p(candidate): |
|
return candidate > min_p and (candidate - 1).gcd(e) == 1 |
|
|
|
p = generate_probable_prime(exact_bits=size_p, |
|
randfunc=randfunc, |
|
prime_filter=filter_p) |
|
|
|
min_distance = Integer(1) << (bits // 2 - 100) |
|
|
|
def filter_q(candidate): |
|
return (candidate > min_q and |
|
(candidate - 1).gcd(e) == 1 and |
|
abs(candidate - p) > min_distance) |
|
|
|
q = generate_probable_prime(exact_bits=size_q, |
|
randfunc=randfunc, |
|
prime_filter=filter_q) |
|
|
|
n = p * q |
|
lcm = (p - 1).lcm(q - 1) |
|
d = e.inverse(lcm) |
|
|
|
if p > q: |
|
p, q = q, p |
|
|
|
u = p.inverse(q) |
|
|
|
return RsaKey(n=n, e=e, d=d, p=p, q=q, u=u) |
|
|
|
|
|
def construct(rsa_components, consistency_check=True): |
|
r"""Construct an RSA key from a tuple of valid RSA components. |
|
|
|
The modulus **n** must be the product of two primes. |
|
The public exponent **e** must be odd and larger than 1. |
|
|
|
In case of a private key, the following equations must apply: |
|
|
|
.. math:: |
|
|
|
\begin{align} |
|
p*q &= n \\ |
|
e*d &\equiv 1 ( \text{mod lcm} [(p-1)(q-1)]) \\ |
|
p*u &\equiv 1 ( \text{mod } q) |
|
\end{align} |
|
|
|
Args: |
|
rsa_components (tuple): |
|
A tuple of integers, with at least 2 and no |
|
more than 6 items. The items come in the following order: |
|
|
|
1. RSA modulus *n*. |
|
2. Public exponent *e*. |
|
3. Private exponent *d*. |
|
Only required if the key is private. |
|
4. First factor of *n* (*p*). |
|
Optional, but the other factor *q* must also be present. |
|
5. Second factor of *n* (*q*). Optional. |
|
6. CRT coefficient *q*, that is :math:`p^{-1} \text{mod }q`. Optional. |
|
|
|
Keyword Args: |
|
consistency_check (boolean): |
|
If ``True``, the library will verify that the provided components |
|
fulfil the main RSA properties. |
|
|
|
Raises: |
|
ValueError: when the key being imported fails the most basic RSA validity checks. |
|
|
|
Returns: An RSA key object (:class:`RsaKey`). |
|
""" |
|
|
|
class InputComps(object): |
|
pass |
|
|
|
input_comps = InputComps() |
|
for (comp, value) in zip(('n', 'e', 'd', 'p', 'q', 'u'), rsa_components): |
|
setattr(input_comps, comp, Integer(value)) |
|
|
|
n = input_comps.n |
|
e = input_comps.e |
|
if not hasattr(input_comps, 'd'): |
|
key = RsaKey(n=n, e=e) |
|
else: |
|
d = input_comps.d |
|
if hasattr(input_comps, 'q'): |
|
p = input_comps.p |
|
q = input_comps.q |
|
else: |
|
|
|
|
|
|
|
ktot = d * e - 1 |
|
|
|
|
|
t = ktot |
|
while t % 2 == 0: |
|
t //= 2 |
|
|
|
|
|
|
|
|
|
|
|
spotted = False |
|
a = Integer(2) |
|
while not spotted and a < 100: |
|
k = Integer(t) |
|
|
|
while k < ktot: |
|
cand = pow(a, k, n) |
|
|
|
if cand != 1 and cand != (n - 1) and pow(cand, 2, n) == 1: |
|
|
|
|
|
p = Integer(n).gcd(cand + 1) |
|
spotted = True |
|
break |
|
k *= 2 |
|
|
|
a += 2 |
|
if not spotted: |
|
raise ValueError("Unable to compute factors p and q from exponent d.") |
|
|
|
assert ((n % p) == 0) |
|
q = n // p |
|
|
|
if hasattr(input_comps, 'u'): |
|
u = input_comps.u |
|
else: |
|
u = p.inverse(q) |
|
|
|
|
|
key = RsaKey(n=n, e=e, d=d, p=p, q=q, u=u) |
|
|
|
|
|
if consistency_check: |
|
|
|
|
|
if e <= 1 or e >= n: |
|
raise ValueError("Invalid RSA public exponent") |
|
if Integer(n).gcd(e) != 1: |
|
raise ValueError("RSA public exponent is not coprime to modulus") |
|
|
|
|
|
if not n & 1: |
|
raise ValueError("RSA modulus is not odd") |
|
|
|
if key.has_private(): |
|
|
|
if d <= 1 or d >= n: |
|
raise ValueError("Invalid RSA private exponent") |
|
if Integer(n).gcd(d) != 1: |
|
raise ValueError("RSA private exponent is not coprime to modulus") |
|
|
|
if p * q != n: |
|
raise ValueError("RSA factors do not match modulus") |
|
if test_probable_prime(p) == COMPOSITE: |
|
raise ValueError("RSA factor p is composite") |
|
if test_probable_prime(q) == COMPOSITE: |
|
raise ValueError("RSA factor q is composite") |
|
|
|
phi = (p - 1) * (q - 1) |
|
lcm = phi // (p - 1).gcd(q - 1) |
|
if (e * d % int(lcm)) != 1: |
|
raise ValueError("Invalid RSA condition") |
|
if hasattr(key, 'u'): |
|
|
|
if u <= 1 or u >= q: |
|
raise ValueError("Invalid RSA component u") |
|
if (p * u % q) != 1: |
|
raise ValueError("Invalid RSA component u with p") |
|
|
|
return key |
|
|
|
|
|
def _import_pkcs1_private(encoded, *kwargs): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
der = DerSequence().decode(encoded, nr_elements=9, only_ints_expected=True) |
|
if der[0] != 0: |
|
raise ValueError("No PKCS#1 encoding of an RSA private key") |
|
return construct(der[1:6] + [Integer(der[4]).inverse(der[5])]) |
|
|
|
|
|
def _import_pkcs1_public(encoded, *kwargs): |
|
|
|
|
|
|
|
|
|
der = DerSequence().decode(encoded, nr_elements=2, only_ints_expected=True) |
|
return construct(der) |
|
|
|
|
|
def _import_subjectPublicKeyInfo(encoded, *kwargs): |
|
|
|
algoid, encoded_key, params = _expand_subject_public_key_info(encoded) |
|
if algoid != oid or params is not None: |
|
raise ValueError("No RSA subjectPublicKeyInfo") |
|
return _import_pkcs1_public(encoded_key) |
|
|
|
|
|
def _import_x509_cert(encoded, *kwargs): |
|
|
|
sp_info = _extract_subject_public_key_info(encoded) |
|
return _import_subjectPublicKeyInfo(sp_info) |
|
|
|
|
|
def _import_pkcs8(encoded, passphrase): |
|
from Crypto.IO import PKCS8 |
|
|
|
k = PKCS8.unwrap(encoded, passphrase) |
|
if k[0] != oid: |
|
raise ValueError("No PKCS#8 encoded RSA key") |
|
return _import_keyDER(k[1], passphrase) |
|
|
|
|
|
def _import_keyDER(extern_key, passphrase): |
|
"""Import an RSA key (public or private half), encoded in DER form.""" |
|
|
|
decodings = (_import_pkcs1_private, |
|
_import_pkcs1_public, |
|
_import_subjectPublicKeyInfo, |
|
_import_x509_cert, |
|
_import_pkcs8) |
|
|
|
for decoding in decodings: |
|
try: |
|
return decoding(extern_key, passphrase) |
|
except ValueError: |
|
pass |
|
|
|
raise ValueError("RSA key format is not supported") |
|
|
|
|
|
def _import_openssh_private_rsa(data, password): |
|
|
|
from ._openssh import (import_openssh_private_generic, |
|
read_bytes, read_string, check_padding) |
|
|
|
ssh_name, decrypted = import_openssh_private_generic(data, password) |
|
|
|
if ssh_name != "ssh-rsa": |
|
raise ValueError("This SSH key is not RSA") |
|
|
|
n, decrypted = read_bytes(decrypted) |
|
e, decrypted = read_bytes(decrypted) |
|
d, decrypted = read_bytes(decrypted) |
|
iqmp, decrypted = read_bytes(decrypted) |
|
p, decrypted = read_bytes(decrypted) |
|
q, decrypted = read_bytes(decrypted) |
|
|
|
_, padded = read_string(decrypted) |
|
check_padding(padded) |
|
|
|
build = [Integer.from_bytes(x) for x in (n, e, d, q, p, iqmp)] |
|
return construct(build) |
|
|
|
|
|
def import_key(extern_key, passphrase=None): |
|
"""Import an RSA key (public or private). |
|
|
|
Args: |
|
extern_key (string or byte string): |
|
The RSA key to import. |
|
|
|
The following formats are supported for an RSA **public key**: |
|
|
|
- X.509 certificate (binary or PEM format) |
|
- X.509 ``subjectPublicKeyInfo`` DER SEQUENCE (binary or PEM |
|
encoding) |
|
- `PKCS#1`_ ``RSAPublicKey`` DER SEQUENCE (binary or PEM encoding) |
|
- An OpenSSH line (e.g. the content of ``~/.ssh/id_ecdsa``, ASCII) |
|
|
|
The following formats are supported for an RSA **private key**: |
|
|
|
- PKCS#1 ``RSAPrivateKey`` DER SEQUENCE (binary or PEM encoding) |
|
- `PKCS#8`_ ``PrivateKeyInfo`` or ``EncryptedPrivateKeyInfo`` |
|
DER SEQUENCE (binary or PEM encoding) |
|
- OpenSSH (text format, introduced in `OpenSSH 6.5`_) |
|
|
|
For details about the PEM encoding, see `RFC1421`_/`RFC1423`_. |
|
|
|
passphrase (string or byte string): |
|
For private keys only, the pass phrase that encrypts the key. |
|
|
|
Returns: An RSA key object (:class:`RsaKey`). |
|
|
|
Raises: |
|
ValueError/IndexError/TypeError: |
|
When the given key cannot be parsed (possibly because the pass |
|
phrase is wrong). |
|
|
|
.. _RFC1421: http://www.ietf.org/rfc/rfc1421.txt |
|
.. _RFC1423: http://www.ietf.org/rfc/rfc1423.txt |
|
.. _`PKCS#1`: http://www.ietf.org/rfc/rfc3447.txt |
|
.. _`PKCS#8`: http://www.ietf.org/rfc/rfc5208.txt |
|
.. _`OpenSSH 6.5`: https://flak.tedunangst.com/post/new-openssh-key-format-and-bcrypt-pbkdf |
|
""" |
|
|
|
from Crypto.IO import PEM |
|
|
|
extern_key = tobytes(extern_key) |
|
if passphrase is not None: |
|
passphrase = tobytes(passphrase) |
|
|
|
if extern_key.startswith(b'-----BEGIN OPENSSH PRIVATE KEY'): |
|
text_encoded = tostr(extern_key) |
|
openssh_encoded, marker, enc_flag = PEM.decode(text_encoded, passphrase) |
|
result = _import_openssh_private_rsa(openssh_encoded, passphrase) |
|
return result |
|
|
|
if extern_key.startswith(b'-----'): |
|
|
|
(der, marker, enc_flag) = PEM.decode(tostr(extern_key), passphrase) |
|
if enc_flag: |
|
passphrase = None |
|
return _import_keyDER(der, passphrase) |
|
|
|
if extern_key.startswith(b'ssh-rsa '): |
|
|
|
keystring = binascii.a2b_base64(extern_key.split(b' ')[1]) |
|
keyparts = [] |
|
while len(keystring) > 4: |
|
length = struct.unpack(">I", keystring[:4])[0] |
|
keyparts.append(keystring[4:4 + length]) |
|
keystring = keystring[4 + length:] |
|
e = Integer.from_bytes(keyparts[1]) |
|
n = Integer.from_bytes(keyparts[2]) |
|
return construct([n, e]) |
|
|
|
if len(extern_key) > 0 and bord(extern_key[0]) == 0x30: |
|
|
|
return _import_keyDER(extern_key, passphrase) |
|
|
|
raise ValueError("RSA key format is not supported") |
|
|
|
|
|
|
|
importKey = import_key |
|
|
|
|
|
|
|
|
|
|
|
|
|
oid = "1.2.840.113549.1.1.1" |
|
|