Spaces:
Sleeping
Sleeping
import pandas as pd | |
from E_Model_utils import train_model, get_embeddings | |
from E_Faiss_utils import load_faiss_index, normalize_embeddings | |
from A_Preprocess import load_data | |
# Load data | |
data_file_path = r"C:\Users\serban.tica\Documents\Intent_detection\data\Pager_Intents.csv" | |
data = load_data(data_file_path) | |
intentions = data['intent'].tolist() | |
# Models to evaluate | |
models = { | |
"mBERT": "bert-base-multilingual-cased", | |
"XLM-R": "xlm-roberta-base", | |
"Romanian BERT": "dumitrescustefan/bert-base-romanian-cased-v1" | |
} | |
# Evaluate models | |
for model_name, model_path in models.items(): | |
print(f"Evaluating model: {model_name}") | |
model = train_model(model_path) | |
index = load_faiss_index(f"embeddings/{model_name}_vector_db.index") | |
# Test with a sample input text | |
input_text = "exemplu de text" | |
input_embedding = get_embeddings(model, [input_text]).cpu().numpy() | |
normalized_embedding = normalize_embeddings(input_embedding) | |
D, I = index.search(normalized_embedding, 1) # Caută cel mai apropiat vecin | |
intent = intentions[I[0][0]] | |
print(f"Intenția identificată de {model_name}: {intent} cu nivel de încredere: {float(D[0][0])}") | |