Spaces:
Sleeping
Sleeping
import faiss | |
import numpy as np | |
def save_faiss_embeddings_index(embeddings, file_name): | |
# Ensure embeddings are in float32 format | |
if not isinstance(embeddings, np.ndarray): | |
embeddings = embeddings.numpy() | |
embeddings = embeddings.astype('float32') | |
# Create a FAISS index | |
index = faiss.IndexFlatL2(embeddings.shape[1]) # L2 distance | |
index.add(embeddings) | |
# Save the FAISS index | |
faiss.write_index(index, file_name) | |
def load_faiss_index(index_path): | |
index = faiss.read_index(index_path) | |
return index | |
def normalize_embeddings(embeddings): | |
# Normalize embeddings | |
embeddings = embeddings / np.linalg.norm(embeddings, axis=1)[:, None] | |
return embeddings | |
def search_faiss_index(index, query_embedding, k=5): | |
# Perform similarity search | |
D, I = index.search(query_embedding, k) # D: distances, I: indices | |
return D, I | |
def Z_load_embeddings_and_index(file_name): | |
# Load embeddings from .npy file | |
embeddings = np.load(f"{file_name}_embeddings.npy") | |
# Load FAISS index from .index file | |
index = faiss.read_index(file_name) | |
return embeddings, index | |