Spaces:
Sleeping
Sleeping
import faiss | |
import pandas as pd | |
import numpy as np | |
from sentence_transformers import SentenceTransformer | |
import time | |
# Start the timer | |
start_time = time.time() | |
# Load the FAISS index | |
index_path = "embeddings/multilingual-e5-small_vector_db.index" | |
#index_path = "embeddings/all-MiniLM-L6-v2_vector_db.index" | |
try: | |
index = faiss.read_index(index_path) | |
print(f"FAISS index loaded successfully from {index_path} - Time passed: {time.time() - start_time:.2f} seconds") | |
except Exception as e: | |
print(f"Error loading FAISS index: {e} - Time passed: {time.time() - start_time:.2f} seconds") | |
# Load the model | |
try: | |
model = SentenceTransformer('intfloat/multilingual-e5-small', local_files_only=True) | |
# model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
print(f"Model loaded successfully - Time passed: {time.time() - start_time:.2f} seconds") | |
except Exception as e: | |
print(f"Error loading model: {e} - Time passed: {time.time() - start_time:.2f} seconds") | |
# Example new text | |
new_text = ["Cat am de plata"] | |
print(f'The text is: {new_text} - Time passed: {time.time() - start_time:.2f} seconds') | |
# Generate embeddings for the new text | |
try: | |
new_embeddings = model.encode(new_text) | |
print(f"Generated embeddings for new text: - Time passed: {time.time() - start_time:.2f} seconds") | |
except Exception as e: | |
print(f"Error generating embeddings: {e} - Time passed: {time.time() - start_time:.2f} seconds") | |
# Convert new embeddings to float32 | |
try: | |
new_embeddings = np.array(new_embeddings).astype('float32') | |
print(f"Converted new embeddings to float32: - Time passed: {time.time() - start_time:.2f} seconds") | |
except Exception as e: | |
print(f"Error converting embeddings to float32: {e} - Time passed: {time.time() - start_time:.2f} seconds") | |
# Perform similarity search | |
try: | |
k = 5 # Number of nearest neighbors to retrieve | |
D, I = index.search(new_embeddings, k) # D: distances, I: indices | |
print(f"Similarity search results: Indices - {I}, Distances - {D} - Time passed: {time.time() - start_time:.2f} seconds") | |
except Exception as e: | |
print(f"Error performing similarity search: {e} - Time passed: {time.time() - start_time:.2f} seconds") | |
# Load the CSV file | |
csv_file_path = r'C:\Users\serban.tica\Documents\tobi_llm_intent_recognition\data\Pager_Intents_Cleaned.csv' | |
try: | |
data = pd.read_csv(csv_file_path) | |
print(f"CSV file loaded successfully from {csv_file_path}") | |
except Exception as e: | |
print(f"Error loading CSV file: {e}") | |
# Retrieve the corresponding rows from the DataFrame | |
'''t# Retrieve the corresponding rows from the DataFrame | |
try: | |
for i, query in enumerate(new_text): | |
print(f"Query: {query} - Time passed: {time.time() - start_time:.2f} seconds") | |
for idx in I[i]: | |
print(f"Index: {idx}, Row: {df.iloc[idx]} - Time passed: {time.time() - start_time:.2f} seconds") | |
except Exception as e: | |
print(f"Error retrieving rows from DataFrame: {e} - Time passed: {time.time() - start_time:.2f} seconds")''' | |
intents = data['intent'].tolist() | |
intent = intents[I[0][0]] | |
distance = D[0][0] | |
similarity = 1 / (1 + distance) | |
print(f"Intenția identificată: {intent}") | |
print(f"Nivel de încredere: {similarity:.4f}- Time passed: {time.time() - start_time:.2f} seconds") |