Spaces:
Sleeping
Sleeping
import faiss | |
import pandas as pd | |
import numpy as np | |
from sentence_transformers import SentenceTransformer | |
# Load the FAISS index | |
index_path = "embeddings/all-MiniLM-L6-v2_vector_db.index" | |
try: | |
index = faiss.read_index(index_path) | |
print(f"FAISS index loaded successfully from {index_path}") | |
except Exception as e: | |
print(f"Error loading FAISS index: {e}") | |
# Load the model | |
try: | |
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
print("Model loaded successfully.") | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
# Example new text | |
new_text = ["Cat am de plata"] | |
print(f'The text is: {new_text}') | |
# Generate embeddings for the new text | |
try: | |
new_embeddings = model.encode(new_text) | |
print(f"Generated embeddings for new text: {new_embeddings[0]}") | |
except Exception as e: | |
print(f"Error generating embeddings: {e}") | |
# Convert new embeddings to float32 | |
try: | |
new_embeddings = np.array(new_embeddings).astype('float32') | |
#print only the first new embedding | |
print(f"Converted new embeddings to float32: {new_embeddings[0]}") | |
except Exception as e: | |
print(f"Error converting embeddings to float32: {e}") | |
# Perform similarity search | |
try: | |
k = 3 # Number of nearest neighbors to retrieve | |
D, I = index.search(new_embeddings, k) # D: distances, I: indices | |
print(f"Similarity search results: Indices - {I}, Distances - {D}") | |
except Exception as e: | |
print(f"Error performing similarity search: {e}") | |
# Print results | |
for i, query in enumerate(new_text): | |
print(f"Query: {query}") | |
print(f"Nearest neighbors indices: {I[i]}") | |
print(f"Nearest neighbors distances: {D[i]}") | |
print() | |
# Load the CSV file | |
csv_file_path = r'C:\Users\serban.tica\Documents\tobi_llm_intent_recognition\data\Pager_Intents_Cleaned.csv' | |
try: | |
df = pd.read_csv(csv_file_path) | |
print(f"CSV file loaded successfully from {csv_file_path}") | |
except Exception as e: | |
print(f"Error loading CSV file: {e}") | |
# Retrieve the corresponding rows from the DataFrame | |
try: | |
for i, query in enumerate(new_text): | |
print(f"Query: {query}") | |
for idx in I[i]: | |
print(f"Index: {idx}, Row: {df.iloc[idx]}") | |
except Exception as e: | |
print(f"Error retrieving rows from DataFrame: {e}") |