- pages/8_Models.py +21 -3
pages/8_Models.py
CHANGED
@@ -22,10 +22,28 @@ def run():
|
|
22 |
model = LogisticRegression()
|
23 |
# (Insert a sample dataset and training procedure here)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# Deep Learning Example: Using Pretrained Transformers
|
26 |
-
st.write("### Example: Transformer Model")
|
27 |
-
nlp = pipeline("sentiment-analysis")
|
28 |
-
st.write(nlp("I love machine learning!"))
|
29 |
|
30 |
st.write("## Quiz: Conceptual Questions")
|
31 |
q1 = st.radio("What is a transformer model used for?", ["Text classification", "Image processing", "Time series analysis"])
|
|
|
22 |
model = LogisticRegression()
|
23 |
# (Insert a sample dataset and training procedure here)
|
24 |
|
25 |
+
|
26 |
+
# Deep Learning Example: Using Pretrained Transformers
|
27 |
+
st.write("### Example: Transformer Model for Sentiment Analysis")
|
28 |
+
|
29 |
+
# Initialize the NLP pipeline for sentiment analysis
|
30 |
+
nlp_pipeline = pipeline("sentiment-analysis")
|
31 |
+
|
32 |
+
def analyze_sentiment(user_sentence):
|
33 |
+
response = nlp_pipeline(user_sentence)
|
34 |
+
return response[0]
|
35 |
+
|
36 |
+
# Example usage
|
37 |
+
user_sentence = st.text_input("Enter a sentence for sentiment analysis:")
|
38 |
+
if user_sentence:
|
39 |
+
response = analyze_sentiment(user_sentence)
|
40 |
+
st.write(f"Sentiment: {response['label']}, Score: {response['score']}")
|
41 |
+
|
42 |
+
|
43 |
# Deep Learning Example: Using Pretrained Transformers
|
44 |
+
#st.write("### Example: Transformer Model")
|
45 |
+
#nlp = pipeline("sentiment-analysis")
|
46 |
+
#st.write(nlp("I love machine learning!"))
|
47 |
|
48 |
st.write("## Quiz: Conceptual Questions")
|
49 |
q1 = st.radio("What is a transformer model used for?", ["Text classification", "Image processing", "Time series analysis"])
|