Spaces:
Sleeping
Sleeping
File size: 6,723 Bytes
92eac82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
# Copyright (c) Alibaba Cloud.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""A simple web interactive chat demo based on gradio."""
from argparse import ArgumentParser
from threading import Thread
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
DEFAULT_CKPT_PATH = "Qwen/Qwen2.5-7B-Instruct"
def _get_args():
parser = ArgumentParser(description="Qwen2.5-Instruct web chat demo.")
parser.add_argument(
"-c",
"--checkpoint-path",
type=str,
default=DEFAULT_CKPT_PATH,
help="Checkpoint name or path, default to %(default)r",
)
parser.add_argument(
"--cpu-only", action="store_true", help="Run demo with CPU only"
)
parser.add_argument(
"--share",
action="store_true",
default=False,
help="Create a publicly shareable link for the interface.",
)
parser.add_argument(
"--inbrowser",
action="store_true",
default=False,
help="Automatically launch the interface in a new tab on the default browser.",
)
parser.add_argument(
"--server-port", type=int, default=8000, help="Demo server port."
)
parser.add_argument(
"--server-name", type=str, default="127.0.0.1", help="Demo server name."
)
args = parser.parse_args()
return args
def _load_model_tokenizer(args):
tokenizer = AutoTokenizer.from_pretrained(
args.checkpoint_path,
resume_download=True,
)
if args.cpu_only:
device_map = "cpu"
else:
device_map = "auto"
model = AutoModelForCausalLM.from_pretrained(
args.checkpoint_path,
torch_dtype="auto",
device_map=device_map,
resume_download=True,
).eval()
model.generation_config.max_new_tokens = 2048 # For chat.
return model, tokenizer
def _chat_stream(model, tokenizer, query, history):
conversation = []
for query_h, response_h in history:
conversation.append({"role": "user", "content": query_h})
conversation.append({"role": "assistant", "content": response_h})
conversation.append({"role": "user", "content": query})
input_text = tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
tokenize=False,
)
inputs = tokenizer([input_text], return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(
tokenizer=tokenizer, skip_prompt=True, timeout=60.0, skip_special_tokens=True
)
generation_kwargs = {
**inputs,
"streamer": streamer,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
for new_text in streamer:
yield new_text
def _gc():
import gc
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
def _launch_demo(args, model, tokenizer):
def predict(_query, _chatbot, _task_history):
print(f"User: {_query}")
_chatbot.append((_query, ""))
full_response = ""
response = ""
for new_text in _chat_stream(model, tokenizer, _query, history=_task_history):
response += new_text
_chatbot[-1] = (_query, response)
yield _chatbot
full_response = response
print(f"History: {_task_history}")
_task_history.append((_query, full_response))
print(f"Qwen: {full_response}")
def regenerate(_chatbot, _task_history):
if not _task_history:
yield _chatbot
return
item = _task_history.pop(-1)
_chatbot.pop(-1)
yield from predict(item[0], _chatbot, _task_history)
def reset_user_input():
return gr.update(value="")
def reset_state(_chatbot, _task_history):
_task_history.clear()
_chatbot.clear()
_gc()
return _chatbot
with gr.Blocks() as demo:
gr.Markdown("""\
<p align="center"><img src="https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/assets/logo/qwen2.5_logo.png" style="height: 120px"/><p>""")
gr.Markdown(
"""\
<center><font size=3>This WebUI is based on Qwen2.5-Instruct, developed by Alibaba Cloud. \
(本WebUI基于Qwen2.5-Instruct打造,实现聊天机器人功能。)</center>"""
)
gr.Markdown("""\
<center><font size=4>
Qwen2.5-7B-Instruct <a href="https://modelscope.cn/models/qwen/Qwen2.5-7B-Instruct/summary">🤖 </a> |
<a href="https://huggingface.co/Qwen/Qwen2.5-7B-Instruct">🤗</a>  |
Qwen2.5-32B-Instruct <a href="https://modelscope.cn/models/qwen/Qwen2.5-32B-Instruct/summary">🤖 </a> |
<a href="https://huggingface.co/Qwen/Qwen2.5-32B-Instruct">🤗</a>  |
Qwen2.5-72B-Instruct <a href="https://modelscope.cn/models/qwen/Qwen2.5-72B-Instruct/summary">🤖 </a> |
<a href="https://huggingface.co/Qwen/Qwen2.5-72B-Instruct">🤗</a>  |
 <a href="https://github.com/QwenLM/Qwen2.5">Github</a></center>""")
chatbot = gr.Chatbot(label="Qwen", elem_classes="control-height")
query = gr.Textbox(lines=2, label="Input")
task_history = gr.State([])
with gr.Row():
empty_btn = gr.Button("🧹 Clear History (清除历史)")
submit_btn = gr.Button("🚀 Submit (发送)")
regen_btn = gr.Button("🤔️ Regenerate (重试)")
submit_btn.click(
predict, [query, chatbot, task_history], [chatbot], show_progress=True
)
submit_btn.click(reset_user_input, [], [query])
empty_btn.click(
reset_state, [chatbot, task_history], outputs=[chatbot], show_progress=True
)
regen_btn.click(
regenerate, [chatbot, task_history], [chatbot], show_progress=True
)
gr.Markdown("""\
<font size=2>Note: This demo is governed by the original license of Qwen2.5. \
We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, \
including hate speech, violence, pornography, deception, etc. \
(注:本演示受Qwen2.5的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,\
包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)""")
demo.queue().launch(
share=args.share,
inbrowser=args.inbrowser,
server_port=args.server_port,
server_name=args.server_name,
)
def main():
args = _get_args()
model, tokenizer = _load_model_tokenizer(args)
_launch_demo(args, model, tokenizer)
if __name__ == "__main__":
main()
|