Spaces:
Sleeping
Sleeping
first_sync_test
Browse files
README.md
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Llm Bill Chat
|
3 |
+
emoji: 🥸🧮
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: red
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.41.1
|
8 |
+
app_file: bill.py
|
9 |
+
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
short_description: 'LLM app '
|
12 |
+
---
|
13 |
+
|
14 |
+
# LLM Bill Chat App
|
15 |
+
|
16 |
+
This project is a proof of concept for a chat application utilizing a Large Language Model (LLM) to assist users with their telecom billing inquiries. The application is built using Python and Streamlit, providing an interactive web interface for users to engage with.
|
17 |
+
|
18 |
+
## Features
|
19 |
+
|
20 |
+
- Maintain chat conversation context
|
21 |
+
- Allow users to query their billing information
|
22 |
+
- Compare the last four bills and provide insights
|
23 |
+
- Respond exclusively with the user's own billing information
|
24 |
+
- Save user information and conversation history
|
25 |
+
|
26 |
+
## Project Structure
|
27 |
+
|
28 |
+
```
|
29 |
+
llm-bill-chat-app
|
30 |
+
├── src
|
31 |
+
│ ├── chat
|
32 |
+
│ │ ├── __init__.py # Package initialization for chat module
|
33 |
+
│ │ ├── context.py # Manages conversation context
|
34 |
+
│ │ ├── bill_comparison.py # Compares user bills
|
35 |
+
│ │ ├── user_info.py # Handles user-specific information
|
36 |
+
│ │ └── conversation.py # Manages conversation flow
|
37 |
+
│ └── utils
|
38 |
+
│ └── __init__.py # Package
|
39 |
+
├── bill.py # Main entry point for the Streamlit app
|
40 |
+
initialization for utils module
|
41 |
+
├── requirements.txt # Project dependencies
|
42 |
+
└── README.md # Project documentation
|
43 |
+
```
|
44 |
+
|
45 |
+
## Installation
|
46 |
+
|
47 |
+
1. Clone the repository:
|
48 |
+
```
|
49 |
+
git remote add origin https://github.com/serbantica/llm-bill-chat.git
|
50 |
+
cd llm-chat-app
|
51 |
+
```
|
52 |
+
|
53 |
+
2. Create and activate a virtual environment (Windows example):
|
54 |
+
```
|
55 |
+
python -m venv .venv .venv\Scrips\activate
|
56 |
+
```
|
57 |
+
|
58 |
+
3. Install the required dependencies:
|
59 |
+
```
|
60 |
+
pip install -r requirements.txt
|
61 |
+
```
|
62 |
+
|
63 |
+
## Usage
|
64 |
+
|
65 |
+
To run the application, execute the following command:
|
66 |
+
```
|
67 |
+
streamlit run bill.py
|
68 |
+
```
|
69 |
+
|
70 |
+
Open your web browser and navigate to `http://localhost:8501` to interact with the chat application.
|
71 |
+
|
72 |
+
## Contributing
|
73 |
+
|
74 |
+
Contributions are welcome! Please feel free to submit a pull request or open an issue for any suggestions or improvements.
|
75 |
+
|
76 |
+
## License
|
77 |
+
|
78 |
+
This project is licensed under the MIT License. See the LICENSE file for more details.
|
bill.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env -S poetry run python
|
2 |
+
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import pdfplumber
|
6 |
+
import streamlit as st
|
7 |
+
from openai import OpenAI
|
8 |
+
|
9 |
+
client = OpenAI()
|
10 |
+
|
11 |
+
def load_user_data(user_id):
|
12 |
+
file_path = os.path.join("data", "user_data", f"user_data_{user_id}.json")
|
13 |
+
if not os.path.exists(file_path):
|
14 |
+
return {}
|
15 |
+
with open(file_path, "r") as file:
|
16 |
+
return json.load(file)
|
17 |
+
|
18 |
+
def parse_pdf_to_json(pdf_path):
|
19 |
+
user_id = {}
|
20 |
+
serie_factura = {}
|
21 |
+
data_factura = {}
|
22 |
+
costuri = {}
|
23 |
+
with pdfplumber.open(pdf_path, ) as pdf:
|
24 |
+
for page in pdf.pages:
|
25 |
+
text = page.extract_text()
|
26 |
+
if text:
|
27 |
+
lines = text.split('\n')
|
28 |
+
|
29 |
+
# Process each line and look for specific categories
|
30 |
+
for line in lines:
|
31 |
+
# Check for 'Data emiterii facturii'
|
32 |
+
if 'Data facturii' in line:
|
33 |
+
date = line.split()[-1]
|
34 |
+
data_factura['Data factura'] = date
|
35 |
+
|
36 |
+
# Check for 'Serie factură'
|
37 |
+
if 'rul facturii:' in line:
|
38 |
+
serie = line.split()[-1]
|
39 |
+
serie_factura['Serie numar'] = serie
|
40 |
+
|
41 |
+
# Check for 'Cont client'
|
42 |
+
if 'Cont client' in line:
|
43 |
+
cont = line.split()[-1]
|
44 |
+
user_id['Cont client'] = cont
|
45 |
+
|
46 |
+
# Check for 'Valoare facturată fără TVA'
|
47 |
+
if 'Sold precedent' in line:
|
48 |
+
value = line.split()[-2].replace(',', '.') # Extract and convert to float
|
49 |
+
costuri['Sold precedent'] = value
|
50 |
+
|
51 |
+
# Check for 'Total bază de impozitare TVA'
|
52 |
+
elif 'din sold precedent' in line:
|
53 |
+
value = line.split()[-2].replace(',', '.') # Extract and convert to float
|
54 |
+
costuri['Total platit din sold precedent'] = value
|
55 |
+
|
56 |
+
# Check for 'TVA'
|
57 |
+
elif 'TVA' in line and '%' in line:
|
58 |
+
value = line.split()[-2].replace(',', '.') # Extract and convert to float
|
59 |
+
costuri['TVA'] = value
|
60 |
+
|
61 |
+
# Check for 'Dobânzi penalizatoare'
|
62 |
+
elif 'Abonamente' in line:
|
63 |
+
value = line.split()[-2].replace(',', '.') # Extract and convert to float
|
64 |
+
costuri['Abonamente si extraopiuni'] = value
|
65 |
+
|
66 |
+
# Check for 'TOTAL DE PLATĂ FACTURĂ CURENTĂ'
|
67 |
+
elif 'Total factura curenta fara TVA' in line:
|
68 |
+
value = float(line.split()[-2].replace(',', '.')) # Extract and convert to float
|
69 |
+
costuri['Total factura curenta fara TVA'] = value
|
70 |
+
|
71 |
+
# Check for 'Sold Cont Contract'
|
72 |
+
elif 'Servicii utilizate' in line:
|
73 |
+
value = line.split()[-2].replace(',', '.') # Extract and convert to float
|
74 |
+
costuri['Servicii utilizate'] = value
|
75 |
+
|
76 |
+
# Check for 'Compensatii'
|
77 |
+
elif 'Rate terminal' in line:
|
78 |
+
value = float(line.split()[-2].replace(',', '.')) # Extract and convert to float
|
79 |
+
costuri['Rate terminal'] = value
|
80 |
+
|
81 |
+
# Check for 'TVA 19,00%'
|
82 |
+
elif 'TVA 19,00%' in line:
|
83 |
+
value = float(line.split()[-2].replace(',', '.')) # Extract and convert to float
|
84 |
+
costuri['TVA'] = value
|
85 |
+
|
86 |
+
# Check for 'Compensatii'
|
87 |
+
elif 'Total factura curenta' in line:
|
88 |
+
value = float(line.split()[-2].replace(',', '.')) # Extract and convert to float
|
89 |
+
costuri['Total factura curenta'] = value
|
90 |
+
|
91 |
+
return costuri
|
92 |
+
|
93 |
+
def check_related_keys(question, user_id):
|
94 |
+
user_data = load_user_data(user_id)
|
95 |
+
bill_keys = set()
|
96 |
+
for bill in user_data.get("bills", []):
|
97 |
+
bill_keys.update(bill.keys())
|
98 |
+
return [key for key in bill_keys if key.lower() in question.lower()]
|
99 |
+
|
100 |
+
def process_query(query, user_id):
|
101 |
+
user_data = load_user_data(user_id)
|
102 |
+
bill_info = user_data.get("bills", [])
|
103 |
+
related_keys = check_related_keys(query, user_id)
|
104 |
+
related_keys_str = ", ".join(related_keys) if related_keys else "N/A"
|
105 |
+
|
106 |
+
if related_keys_str != "N/A":
|
107 |
+
context = (
|
108 |
+
f"Citeste informatiile despre costrurile in lei facturate din dictionar: {bill_info} "
|
109 |
+
f"si raspunde la intrebarea: '{query}' dar numai cu info legate de: {related_keys_str}"
|
110 |
+
)
|
111 |
+
else:
|
112 |
+
context = (
|
113 |
+
f"Citeste informatiile despre costrurile in lei facturate din dictionar: {bill_info} "
|
114 |
+
f"si raspunde la intrebarea: '{query}' dar numai cu info legate de factura"
|
115 |
+
)
|
116 |
+
|
117 |
+
max_input_length = 550
|
118 |
+
st.write(f"Context:\n{context}")
|
119 |
+
st.write(f"Context size: {len(context)} characters")
|
120 |
+
|
121 |
+
if len(context) > max_input_length:
|
122 |
+
st.warning("Prea multe caractere în context, solicitarea nu va fi trimisă.")
|
123 |
+
return None
|
124 |
+
|
125 |
+
return context
|
126 |
+
|
127 |
+
def main():
|
128 |
+
|
129 |
+
st.title("Telecom Bill Chat with LLM Agent")
|
130 |
+
|
131 |
+
if "user_id" not in st.session_state:
|
132 |
+
st.session_state.user_id = None
|
133 |
+
|
134 |
+
user_id = st.sidebar.text_input("Introdu numărul de telefon:")
|
135 |
+
if user_id and user_id != st.session_state.user_id:
|
136 |
+
data = load_user_data(user_id)
|
137 |
+
if data:
|
138 |
+
st.session_state.user_id = user_id
|
139 |
+
st.success("Utilizator găsit!")
|
140 |
+
else:
|
141 |
+
st.warning("Nu am găsit date pentru acest ID. Încărcați o factură PDF la nevoie.")
|
142 |
+
st.session_state.user_id = user_id
|
143 |
+
|
144 |
+
uploaded_file = st.file_uploader("Încarcă factura PDF", type="pdf")
|
145 |
+
if uploaded_file and st.session_state.user_id:
|
146 |
+
bill_data = parse_pdf_to_json(uploaded_file)
|
147 |
+
existing_data = load_user_data(st.session_state.user_id)
|
148 |
+
if "bills" not in existing_data:
|
149 |
+
existing_data["bills"] = []
|
150 |
+
existing_data["bills"].append(bill_data)
|
151 |
+
file_path = os.path.join("data", "user_data", f"user_data_{st.session_state['user_id']}.json")
|
152 |
+
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
153 |
+
with open(file_path, "w") as file:
|
154 |
+
json.dump(existing_data, file)
|
155 |
+
st.success("Factura a fost încărcată și salvată cu succes!")
|
156 |
+
|
157 |
+
if st.session_state.user_id:
|
158 |
+
data = load_user_data(st.session_state.user_id)
|
159 |
+
st.write(f"Phone Number: {st.session_state.user_id}")
|
160 |
+
st.write("Facturi existente:")
|
161 |
+
for bill in data.get("bills", []):
|
162 |
+
st.write(bill)
|
163 |
+
else:
|
164 |
+
st.info("Introduceți un ID și/sau încărcați o factură PDF pentru a continua.")
|
165 |
+
|
166 |
+
# Initialize conversation in the session state
|
167 |
+
# "context_prompt_added" indicates whether we've added the specialized "bill info" context yet.
|
168 |
+
if "messages" not in st.session_state:
|
169 |
+
st.session_state["messages"] = [
|
170 |
+
{"role": "assistant", "content": "Cu ce te pot ajuta?"}
|
171 |
+
]
|
172 |
+
if "context_prompt_added" not in st.session_state:
|
173 |
+
st.session_state.context_prompt_added = False
|
174 |
+
|
175 |
+
st.write("---")
|
176 |
+
st.subheader("Chat")
|
177 |
+
|
178 |
+
for msg in st.session_state["messages"]:
|
179 |
+
st.chat_message(msg["role"]).write(msg["content"])
|
180 |
+
|
181 |
+
if prompt := st.chat_input("Introduceți întrebarea aici:"):
|
182 |
+
if not st.session_state.user_id:
|
183 |
+
st.error("Trebuie să introduceți un număr de telefon valid sau să încărcați date.")
|
184 |
+
return
|
185 |
+
|
186 |
+
# If the context prompt hasn't been added yet, build & inject it once;
|
187 |
+
# otherwise, just add the user's raw question.
|
188 |
+
if not st.session_state.context_prompt_added:
|
189 |
+
final_prompt = process_query(prompt, st.session_state["user_id"])
|
190 |
+
if final_prompt is None:
|
191 |
+
st.stop()
|
192 |
+
st.session_state["messages"].append({"role": "user", "content": final_prompt})
|
193 |
+
st.session_state.context_prompt_added = True
|
194 |
+
else:
|
195 |
+
st.session_state["messages"].append({"role": "user", "content": prompt})
|
196 |
+
|
197 |
+
# Display the latest user message in the chat
|
198 |
+
st.chat_message("user").write(st.session_state["messages"][-1]["content"])
|
199 |
+
|
200 |
+
# Now call GPT-4 with the entire conversation
|
201 |
+
completion = client.chat.completions.create(
|
202 |
+
model="gpt-4",
|
203 |
+
messages=st.session_state["messages"]
|
204 |
+
)
|
205 |
+
response_text = completion.choices[0].message.content.strip()
|
206 |
+
|
207 |
+
st.session_state["messages"].append({"role": "assistant", "content": response_text})
|
208 |
+
st.chat_message("assistant").write(response_text)
|
209 |
+
|
210 |
+
if hasattr(completion, "usage"):
|
211 |
+
st.write("Prompt tokens:", completion.usage.prompt_tokens)
|
212 |
+
st.write("Completion tokens:", completion.usage.completion_tokens)
|
213 |
+
st.write("Total tokens:", completion.usage.total_tokens)
|
214 |
+
|
215 |
+
if __name__ == "__main__":
|
216 |
+
main()
|