import streamlit as st import torch from transformers import AutoModelForCausalLM, AutoTokenizer available_models = [ "Qwen/Qwen1.5-7B-Chat", # Example: This is our Qwen model ] def initialize_chat_model(model_name): # Only load model if we haven't loaded it before, or if model_name changed if "chat_model" not in st.session_state or st.session_state.model_name != model_name: # Load the Qwen model and tokenizer tokenizer = AutoTokenizer.from_pretrained( model_name ) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # Pick device; if you have CUDA, this will be "cuda", else it defaults to "cpu" device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # Save in session state st.session_state.chat_tokenizer = tokenizer st.session_state.chat_model = model st.session_state.device = device st.session_state.model_name = model_name def generate_response( user_input: str, model_name: str, temperature: float = 0.7, top_k: int = 50, top_p: float = 0.9, repetition_penalty: float = 1.2 ) -> str: # Make sure model is initialized initialize_chat_model(model_name) tokenizer = st.session_state.chat_tokenizer model = st.session_state.chat_model device = st.session_state.device # Construct chat messages for Qwen messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": user_input} ] # Use Qwen's chat template text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Tokenize and move to chosen device model_inputs = tokenizer([text], return_tensors="pt").to(device) # Generate the output with torch.no_grad(): generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512, # Adjust as needed temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True ) # Exclude the original input tokens from the output to get only newly generated text generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] # Decode output_text = tokenizer.batch_decode( generated_ids, skip_special_tokens=True )[0] return output_text