gerasdf commited on
Commit
cf5e123
·
1 Parent(s): 5572989
Files changed (5) hide show
  1. .gitignore +1 -0
  2. README.md +2 -2
  3. app.py +0 -63
  4. query.py +144 -0
  5. requirements.txt +1 -1
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ books
README.md CHANGED
@@ -4,9 +4,9 @@ emoji: 💬
4
  colorFrom: yellow
5
  colorTo: purple
6
  sdk: gradio
7
- app_file: app.py
8
  pinned: false
9
  license: mit
10
  ---
11
 
12
- An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
 
4
  colorFrom: yellow
5
  colorTo: purple
6
  sdk: gradio
7
+ app_file: query.py
8
  pinned: false
9
  license: mit
10
  ---
11
 
12
+ An example chatbot doing RAG to fetch context form documents using Astra DB
app.py DELETED
@@ -1,63 +0,0 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
query.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from langchain_astradb import AstraDBVectorStore
4
+
5
+ from langchain_core.prompts import ChatPromptTemplate
6
+ from langchain_core.output_parsers import StrOutputParser
7
+ from langchain_core.runnables import RunnablePassthrough, RunnableLambda
8
+ from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
9
+ from langchain_openai import OpenAIEmbeddings, ChatOpenAI
10
+
11
+ import os
12
+
13
+ prompt_template = os.environ.get("PROMPT_TEMPLATE")
14
+
15
+ prompt = ChatPromptTemplate.from_messages([('system', prompt_template)])
16
+
17
+ AI = False
18
+
19
+ def ai_setup():
20
+ global llm, prompt_chain
21
+ llm = ChatOpenAI(model = "gpt-4o", temperature=0.8)
22
+
23
+ if AI:
24
+ embedding = OpenAIEmbeddings()
25
+ vstore = AstraDBVectorStore(
26
+ embedding=embedding,
27
+ collection_name=os.environ.get("ASTRA_DB_COLLECTION"),
28
+ token=os.environ.get("ASTRA_DB_APPLICATION_TOKEN"),
29
+ api_endpoint=os.environ.get("ASTRA_DB_API_ENDPOINT"),
30
+ )
31
+
32
+ retriever = vstore.as_retriever(search_kwargs={'k': 10})
33
+ else:
34
+ retriever = RunnableLambda(just_read)
35
+
36
+ prompt_chain = (
37
+ {"context": retriever, "question": RunnablePassthrough()}
38
+ | RunnableLambda(format_context)
39
+ | prompt
40
+ # | llm
41
+ # | StrOutputParser()
42
+ )
43
+
44
+ def group_and_sort(documents):
45
+ grouped = {}
46
+ for document in documents:
47
+ title = document.metadata["Title"]
48
+ docs = grouped.get(title, [])
49
+ grouped[title] = docs
50
+
51
+ docs.append((document.page_content, document.metadata["range"]))
52
+
53
+ for title, values in grouped.items():
54
+ values.sort(key=lambda doc:doc[1][0])
55
+
56
+ for title in grouped:
57
+ text = ''
58
+ prev_last = 0
59
+ for fragment, (start, last) in grouped[title]:
60
+ if start < prev_last:
61
+ text += fragment[prev_last-start:]
62
+ elif start == prev_last:
63
+ text += fragment
64
+ else:
65
+ text += ' [...] '
66
+ text += fragment
67
+ prev_last = last
68
+
69
+ grouped[title] = text
70
+
71
+ return grouped
72
+
73
+ def format_context(pipeline_state):
74
+ """Print the state passed between Runnables in a langchain and pass it on"""
75
+
76
+ context = ''
77
+ documents = group_and_sort(pipeline_state["context"])
78
+ for title, text in documents.items():
79
+ context += f"\nTitle: {title}\n"
80
+ context += text
81
+ context += '\n\n---\n'
82
+
83
+ pipeline_state["context"] = context
84
+ return pipeline_state
85
+
86
+ def just_read(pipeline_state):
87
+ fname = "docs.pickle"
88
+ import pickle
89
+
90
+ return pickle.load(open(fname, "rb"))
91
+
92
+ def new_state():
93
+ return gr.State({
94
+ "system": None,
95
+ })
96
+
97
+ def chat(message, history, state):
98
+ if not history:
99
+ system_prompt = prompt_chain.invoke(message)
100
+ system_prompt = system_prompt.messages[0]
101
+ state["system"] = system_prompt
102
+ else:
103
+ system_prompt = state["system"]
104
+
105
+ messages = [system_prompt]
106
+ for human, ai in history:
107
+ messages.append(HumanMessage(human))
108
+ messages.append(AIMessage(ai))
109
+ messages.append(HumanMessage(message))
110
+
111
+ all = ''
112
+ for response in llm.stream(messages):
113
+ all += response.content
114
+ yield all
115
+
116
+ def gr_main():
117
+ theme = gr.Theme.from_hub("freddyaboulton/[email protected]")
118
+ theme.set(
119
+ color_accent_soft="#818eb6", # ChatBot.svelte / .message-row.panel.user-row
120
+ background_fill_secondary="#6272a4", # ChatBot.svelte / .message-row.panel.bot-row
121
+ button_primary_text_color="*button_secondary_text_color",
122
+ button_primary_background_fill="*button_secondary_background_fill")
123
+
124
+ with gr.Blocks(
125
+ title="Sherlock Holmes stories",
126
+ fill_height=True,
127
+ theme=theme
128
+ ) as app:
129
+ state = new_state()
130
+ gr.ChatInterface(
131
+ chat,
132
+ chatbot=gr.Chatbot(show_label=False, render=False, scale=1),
133
+ title="Sherlock Holmes stories",
134
+ examples=[
135
+ ["I arrived late last night and found a dead goose in my bed"],
136
+ ["Help please sir. I'm about to get married, to the most lovely lady,"
137
+ "and I just received a letter threatening me to make public some things"
138
+ "of my past I'd rather keep quiet, unless I don't marry"],
139
+ ],
140
+ additional_inputs=[state])
141
+ app.launch(show_api=False)
142
+ if __name__ == "__main__":
143
+ ai_setup()
144
+ gr_main()
requirements.txt CHANGED
@@ -1 +1 @@
1
- huggingface_hub==0.22.2
 
1
+ ragstack-ai