File size: 4,219 Bytes
d4f2f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
diff --git a/models/stylegan2/op/fused_act.py b/models/stylegan2/op/fused_act.py
index 973a84f..6854b97 100644
--- a/models/stylegan2/op/fused_act.py
+++ b/models/stylegan2/op/fused_act.py
@@ -2,17 +2,18 @@ import os
 
 import torch
 from torch import nn
+from torch.nn import functional as F
 from torch.autograd import Function
 from torch.utils.cpp_extension import load
 
-module_path = os.path.dirname(__file__)
-fused = load(
-    'fused',
-    sources=[
-        os.path.join(module_path, 'fused_bias_act.cpp'),
-        os.path.join(module_path, 'fused_bias_act_kernel.cu'),
-    ],
-)
+#module_path = os.path.dirname(__file__)
+#fused = load(
+#    'fused',
+#    sources=[
+#        os.path.join(module_path, 'fused_bias_act.cpp'),
+#        os.path.join(module_path, 'fused_bias_act_kernel.cu'),
+#    ],
+#)
 
 
 class FusedLeakyReLUFunctionBackward(Function):
@@ -82,4 +83,18 @@ class FusedLeakyReLU(nn.Module):
 
 
 def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
-    return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
+    if input.device.type == "cpu":
+        if bias is not None:
+            rest_dim = [1] * (input.ndim - bias.ndim - 1)
+            return (
+                F.leaky_relu(
+                    input + bias.view(1, bias.shape[0], *rest_dim), negative_slope=0.2
+                )
+                * scale
+            )
+
+        else:
+            return F.leaky_relu(input, negative_slope=0.2) * scale
+
+    else:
+        return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
diff --git a/models/stylegan2/op/upfirdn2d.py b/models/stylegan2/op/upfirdn2d.py
index 7bc5a1e..5465d1a 100644
--- a/models/stylegan2/op/upfirdn2d.py
+++ b/models/stylegan2/op/upfirdn2d.py
@@ -1,17 +1,18 @@
 import os
 
 import torch
+from torch.nn import functional as F
 from torch.autograd import Function
 from torch.utils.cpp_extension import load
 
-module_path = os.path.dirname(__file__)
-upfirdn2d_op = load(
-    'upfirdn2d',
-    sources=[
-        os.path.join(module_path, 'upfirdn2d.cpp'),
-        os.path.join(module_path, 'upfirdn2d_kernel.cu'),
-    ],
-)
+#module_path = os.path.dirname(__file__)
+#upfirdn2d_op = load(
+#    'upfirdn2d',
+#    sources=[
+#        os.path.join(module_path, 'upfirdn2d.cpp'),
+#        os.path.join(module_path, 'upfirdn2d_kernel.cu'),
+#    ],
+#)
 
 
 class UpFirDn2dBackward(Function):
@@ -97,8 +98,8 @@ class UpFirDn2d(Function):
 
         ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
 
-        out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
-        out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
+        out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y
+        out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x
         ctx.out_size = (out_h, out_w)
 
         ctx.up = (up_x, up_y)
@@ -140,9 +141,13 @@ class UpFirDn2d(Function):
 
 
 def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
-    out = UpFirDn2d.apply(
-        input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1])
-    )
+    if input.device.type == "cpu":
+        out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1])
+
+    else:
+        out = UpFirDn2d.apply(
+            input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1])
+        )
 
     return out
 
@@ -150,6 +155,9 @@ def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
 def upfirdn2d_native(
         input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
 ):
+    _, channel, in_h, in_w = input.shape
+    input = input.reshape(-1, in_h, in_w, 1)
+
     _, in_h, in_w, minor = input.shape
     kernel_h, kernel_w = kernel.shape
 
@@ -180,5 +188,9 @@ def upfirdn2d_native(
         in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
     )
     out = out.permute(0, 2, 3, 1)
+    out = out[:, ::down_y, ::down_x, :]
+
+    out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h + down_y) // down_y
+    out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w + down_x) // down_x
 
-    return out[:, ::down_y, ::down_x, :]
+    return out.view(-1, channel, out_h, out_w)