|
|
|
|
|
import numpy as np |
|
from time import time |
|
import torch |
|
|
|
|
|
def numpy_benchmark(): |
|
np.random.seed(0) |
|
|
|
size = 4096 |
|
A, B = np.random.random((size, size)), np.random.random((size, size)) |
|
C, D = np.random.random((size * 1280,)), np.random.random( |
|
(size * 1280,) |
|
) |
|
E = np.random.random((int(size / 2), int(size / 4))) |
|
F = np.random.random((int(size / 2), int(size / 2))) |
|
F = np.dot(F, F.T) |
|
G = np.random.random((int(size / 2), int(size / 2))) |
|
H = np.random.random((size, size)) |
|
I = np.random.random((int(size), int(size))) |
|
|
|
print("\nNUMPY CONFIGURATION:") |
|
print(np.show_config()) |
|
|
|
print("\nNUMPY BENCHMARK RESULTS:") |
|
|
|
t0 = time() |
|
|
|
N = 20 |
|
t = time() |
|
for i in range(N): |
|
np.dot(A, B) |
|
delta = time() - t |
|
print(f"1. Dotted two {size}x{size} matrices in {delta / N:.3f} s.") |
|
del A, B |
|
|
|
|
|
N = 5000 |
|
t = time() |
|
for i in range(N): |
|
np.dot(C, D) |
|
delta = time() - t |
|
print(f"2. Dotted two vectors of length {size * 1280} in {1e3 * delta / N:.3f} ms.") |
|
del C, D |
|
|
|
|
|
N = 3 |
|
t = time() |
|
for i in range(N): |
|
np.linalg.svd(E, full_matrices=False) |
|
delta = time() - t |
|
print(f"3. SVD of a {size // 2}x{size // 4} matrix in {delta / N:.3f} s.") |
|
del E |
|
|
|
|
|
N = 3 |
|
t = time() |
|
for i in range(N): |
|
np.linalg.cholesky(F) |
|
delta = time() - t |
|
print(f"4. Cholesky decomposition of a {size // 2}x{size // 2} matrix in {delta / N:.3f} s.") |
|
|
|
|
|
t = time() |
|
for i in range(N): |
|
np.linalg.eig(G) |
|
delta = time() - t |
|
print(f"5. Eigendecomposition of a {size // 2}x{size // 2} matrix in {delta / N:.3f} s.") |
|
|
|
|
|
N = 10 |
|
t = time() |
|
for i in range(N): |
|
np.dot(H.T, H) |
|
delta = time() - t |
|
print(f"6. Computing Covariance Matrix of a {size}x{size} matrix in {delta / N:.4f} s.") |
|
|
|
|
|
N = 3 |
|
t = time() |
|
for i in range(N): |
|
np.linalg.inv(I) |
|
delta = time() - t |
|
print(f"7. Inverse Matrix of a {size}x{size} matrix in {delta / N:.4f} s.") |
|
|
|
|
|
N, D_in, H, D_out = 64, 1000, 100, 10 |
|
x = np.random.randn(N, D_in) |
|
y = np.random.randn(N, D_out) |
|
w1 = np.random.randn(D_in, H) |
|
w2 = np.random.randn(H, D_out) |
|
learning_rate = 1e-6 |
|
|
|
t = time() |
|
for _ in range(10000): |
|
h = x.dot(w1) |
|
h_relu = np.maximum(h, 0) |
|
y_pred = h_relu.dot(w2) |
|
loss = np.square(y_pred - y).sum() |
|
grad_y_pred = 2.0 * (y_pred - y) |
|
grad_w2 = h_relu.T.dot(grad_y_pred) |
|
grad_h_relu = grad_y_pred.dot(w2.T) |
|
grad_h = grad_h_relu.copy() |
|
grad_h[h < 0] = 0 |
|
grad_w1 = x.T.dot(grad_h) |
|
w1 -= learning_rate * grad_w1 |
|
w2 -= learning_rate * grad_w2 |
|
delta = time() - t |
|
print(f"8. Gradient calculation time: {delta:.3f} s.") |
|
|
|
J = np.random.rand(size * 1280) |
|
t = time() |
|
N = 5 |
|
for _ in range(N): |
|
sorted_indices = np.argsort(J)[::-1] |
|
cumulative_probs = np.cumsum(sorted_indices) |
|
sorted_indices_to_remove = cumulative_probs > np.random.rand() |
|
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy() |
|
sorted_indices_to_remove[0] = False |
|
J[sorted_indices[sorted_indices_to_remove]] = -np.inf |
|
delta = time() - t |
|
print( |
|
f"9. np.argsort and np.cumsum on a vector of length {size*1280} in {1e3 * delta / N:.3f} ms." |
|
) |
|
del J |
|
|
|
K, L = np.random.random((size, 1)), np.random.random((1, size)) |
|
t = time() |
|
N = 200 |
|
for _ in range(N): |
|
M = K * L |
|
delta = time() - t |
|
print(f"10. Broadcasting two vectors of length {size} in {1e3 * delta / N:.3f} ms.") |
|
del K, L, M |
|
|
|
N = np.random.random((size, size)) |
|
indices = np.random.randint(size, size=(size,)) |
|
t = time() |
|
M = 200 |
|
for _ in range(M): |
|
O = N[indices, :] |
|
delta = time() - t |
|
print(f"11. Indexing a {size}x{size} matrix in {1e3 * delta / M:.3f} ms.") |
|
del N, O |
|
|
|
P = np.random.random((size, size)) |
|
t = time() |
|
M = 100 |
|
for _ in range(M): |
|
s = np.sum(P) |
|
delta = time() - t |
|
print(f"12. Sum reduction of a {size}x{size} matrix in {1e3 * delta / M:.3f} ms.") |
|
del P |
|
|
|
Q = np.random.random((size, size)) |
|
R = torch.tensor(Q) |
|
|
|
|
|
t = time() |
|
N = 100 |
|
for _ in range(N): |
|
R = torch.from_numpy(Q) |
|
delta = time() - t |
|
print( |
|
f"13. Conversion of a Numpy {size}x{size} matrix to PyTorch tensor in {1e3 * delta / N:.3f} ms." |
|
) |
|
|
|
|
|
t = time() |
|
for _ in range(N): |
|
Q_new = R.numpy() |
|
delta = time() - t |
|
print( |
|
f"14. Conversion of a PyTorch tensor {size}x{size} to Numpy array in {1e3 * delta / N:.3f} ms." |
|
) |
|
del Q, R |
|
|
|
|
|
Q = np.random.random((size, size)).astype(np.float32) |
|
R = torch.tensor(Q) |
|
|
|
|
|
t = time() |
|
N = 100 |
|
for _ in range(N): |
|
R = torch.tensor(Q, dtype=torch.float64) |
|
delta = time() - t |
|
print( |
|
f"15. Conversion of a Numpy {size}x{size} matrix to PyTorch tensor with forced copy in {1e3 * delta / N:.3f} ms." |
|
) |
|
|
|
|
|
t = time() |
|
for _ in range(N): |
|
Q_new = (R + 0).numpy() |
|
delta = time() - t |
|
print( |
|
f"16. Conversion of a PyTorch tensor {size}x{size} to Numpy array with forced copy in {1e3 * delta / N:.3f} ms." |
|
) |
|
del Q, R |
|
|
|
t1 = time() |
|
print(f"\nTotal time: {t1 - t0:.3f}s \n\n") |
|
|
|
|
|
if __name__ == "__main__": |
|
numpy_benchmark() |
|
|