|
|
|
from __future__ import annotations |
|
|
|
import csv |
|
import os |
|
import os.path |
|
import typing |
|
import collections.abc as abc |
|
import tempfile |
|
import shutil |
|
|
|
|
|
|
|
|
|
|
|
|
|
class PromptTransformation(typing.NamedTuple): |
|
name: str |
|
regex: str |
|
replacement: str |
|
flags: str |
|
long_description: str |
|
|
|
|
|
def merge_prompts(transformation_prompt: str, prompt: str) -> str: |
|
if "{prompt}" in transformation_prompt: |
|
res = transformation_prompt.replace("{prompt}", prompt) |
|
else: |
|
parts = filter(None, (prompt.strip(), transformation_prompt.strip())) |
|
res = ", ".join(parts) |
|
|
|
return res |
|
|
|
import re |
|
def apply_rule_to_prompt(rule, text): |
|
regex = rule.regex |
|
replacement = rule.replacement |
|
|
|
flags = 0 |
|
if 'MULTILINE' in rule.flags: |
|
flags |= re.MULTILINE |
|
return re.sub(regex, replacement, text, flags=flags) |
|
|
|
def apply_transformations_to_prompt(prompt, transformations): |
|
for transformation in transformations: |
|
|
|
|
|
prompt = apply_rule_to_prompt(transformation, prompt) |
|
|
|
return prompt |
|
|
|
|
|
class TransformationDatabase: |
|
def __init__(self, path: str, user_path: str): |
|
self.no_transformation = PromptTransformation("None", "", "", "","") |
|
self.transformations = {} |
|
self.path = path |
|
self.user_path = user_path |
|
|
|
self.reload() |
|
|
|
def reload(self): |
|
self.transformations.clear() |
|
|
|
if not os.path.exists(self.path): |
|
print(f"Can't find transformations at {self.path}") |
|
else: |
|
with open(self.path, "r", encoding="utf-8-sig", newline='') as file: |
|
reader = csv.DictReader(file) |
|
for row in reader: |
|
|
|
|
|
regex = row["regex"] |
|
replacement = row.get("replacement", "") |
|
flags = row.get("flags", "") |
|
long_description = row.get("long_description", "") |
|
self.transformations[row["name"]] = PromptTransformation(row["name"], regex, replacement, flags, long_description) |
|
|
|
if not os.path.exists(self.user_path): |
|
print(f"Can't find transformations at {self.user_path}") |
|
else: |
|
with open(self.user_path, "r", encoding="utf-8-sig", newline='') as file: |
|
reader = csv.DictReader(file) |
|
for row in reader: |
|
|
|
|
|
regex = row["regex"] |
|
replacement = row.get("replacement", "") |
|
flags = row.get("flags", "") |
|
self.transformations[row["name"]] = PromptTransformation(row["name"], regex, replacement, flags, long_description) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def apply_transformations_to_prompt(self, prompt, transformations): |
|
return apply_transformations_to_prompt(prompt, [self.transformations.get(x, self.no_transformation) for x in transformations]) |
|
|
|
|
|
|
|
def save_transformations(self, path: str) -> None: |
|
|
|
if os.path.exists(path): |
|
shutil.copy(path, path + ".bak") |
|
|
|
fd = os.open(path, os.O_RDWR|os.O_CREAT) |
|
with os.fdopen(fd, "w", encoding="utf-8-sig", newline='') as file: |
|
|
|
|
|
writer = csv.DictWriter(file, fieldnames=PromptTransformation._fields) |
|
writer.writeheader() |
|
writer.writerows(transformation._asdict() for k, transformation in self.transformations.items()) |
|
|