Spaces:
Running
Running
File size: 16,968 Bytes
12761b6 8bdf52a 690c5f2 12761b6 690c5f2 12761b6 8bdf52a 12761b6 8bdf52a 690c5f2 12761b6 690c5f2 12761b6 8bdf52a 690c5f2 12761b6 690c5f2 12761b6 690c5f2 12761b6 8bdf52a 3ca22c6 8bdf52a 690c5f2 8bdf52a 690c5f2 8bdf52a 690c5f2 3ca22c6 12761b6 3ca22c6 12761b6 3ca22c6 690c5f2 12761b6 690c5f2 12761b6 690c5f2 12761b6 690c5f2 12761b6 690c5f2 0e968ee 690c5f2 764b22c 690c5f2 558f756 12761b6 8bdf52a 690c5f2 8bdf52a 12761b6 3ca22c6 690c5f2 3ca22c6 cdb088d 3ca22c6 cdb088d 690c5f2 8bdf52a 12761b6 8bdf52a 690c5f2 cdb088d 690c5f2 764b22c 3ca22c6 690c5f2 12761b6 690c5f2 3ca22c6 cdb088d 690c5f2 3ca22c6 764b22c 690c5f2 12761b6 690c5f2 12761b6 764b22c 12761b6 690c5f2 cdb088d 690c5f2 cdb088d 690c5f2 12761b6 764b22c 12761b6 690c5f2 764b22c 690c5f2 764b22c 690c5f2 764b22c 690c5f2 12761b6 690c5f2 12761b6 690c5f2 cdb088d 690c5f2 764b22c 3ca22c6 764b22c 8bdf52a 764b22c 3ca22c6 764b22c 8bdf52a 690c5f2 3ca22c6 690c5f2 3ca22c6 690c5f2 8bdf52a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import argparse
import os
import gradio as gr
import matplotlib.pyplot as plt
import pandas as pd
import pkg_resources
from dash_bio import Clustergram
from proscope.data import get_genename_to_uniprot, get_lddt, get_seq
seq = get_seq()
genename_to_uniprot = get_genename_to_uniprot()
lddt = get_lddt()
import sys
from glob import glob
import numpy as np
from atac_rna_data_processing.config.load_config import load_config
from atac_rna_data_processing.io.celltype import GETCellType
from atac_rna_data_processing.io.nr_motif_v1 import NrMotifV1
from proscope.af2 import AFPairseg
from proscope.protein import Protein
from proscope.viewer import view_pdb_html
args = argparse.ArgumentParser()
args.add_argument("-p", "--port", type=int, default=7860, help="Port number")
args.add_argument("-s", "--share", action="store_true", help="Share on network")
args.add_argument("-d", "--data", type=str, default="/data", help="Data directory")
args = args.parse_args()
# set pseudo args
# args = args.parse_args(['-p', '7869', '-s', '-d', '/manitou/pmg/users/xf2217/demo_data'])
gene_pairs = glob(f"{args.data}/structures/causal/*")
gene_pairs = [os.path.basename(pair) for pair in gene_pairs]
GET_CONFIG = load_config(
"/manitou/pmg/users/xf2217/atac_rna_data_processing/atac_rna_data_processing/config/GET"
)
GET_CONFIG.celltype.jacob = True
GET_CONFIG.celltype.num_cls = 2
GET_CONFIG.celltype.input = True
GET_CONFIG.celltype.embed = True
GET_CONFIG.celltype.data_dir = (
"/manitou/pmg/users/xf2217/pretrain_human_bingren_shendure_apr2023/fetal_adult/"
)
GET_CONFIG.celltype.interpret_dir = (
"/manitou/pmg/users/xf2217/Interpretation_all_hg38_allembed_v4_natac/"
)
GET_CONFIG.motif_dir = "/manitou/pmg/users/xf2217/interpret_natac/motif-clustering"
motif = NrMotifV1.load_from_pickle(
pkg_resources.resource_filename("atac_rna_data_processing", "data/NrMotifV1.pkl"),
GET_CONFIG.motif_dir,
)
cell_type_annot = pd.read_csv(
GET_CONFIG.celltype.data_dir.split("fetal_adult")[0]
+ "data/cell_type_pretrain_human_bingren_shendure_apr2023.txt"
)
cell_type_id_to_name = dict(zip(cell_type_annot["id"], cell_type_annot["celltype"]))
cell_type_name_to_id = dict(zip(cell_type_annot["celltype"], cell_type_annot["id"]))
avaliable_celltypes = sorted(
[
cell_type_id_to_name[f.split("/")[-1]]
for f in glob(GET_CONFIG.celltype.interpret_dir + "*")
]
)
plt.rcParams["figure.dpi"] = 100
def visualize_AF2(tf_pair, a):
strcture_dir = f"{args.data}/structures/causal/{tf_pair}"
fasta_dir = f"{args.data}/sequences/causal/{tf_pair}"
if not os.path.exists(strcture_dir):
gr.ErrorText("No such gene pair")
a = AFPairseg(strcture_dir, fasta_dir)
# segpair.choices = list(a.pairs_data.keys())
fig1, ax1 = a.plot_plddt_gene1()
fig2, ax2 = a.plot_plddt_gene2()
fig3, ax3 = a.protein1.plot_plddt()
fig4, ax4 = a.protein2.plot_plddt()
fig5, ax5 = a.plot_score_heatmap()
plt.tight_layout()
new_dropdown = update_dropdown(list(a.pairs_data.keys()), "Segment pair")
return fig1, fig2, fig3, fig4, fig5, new_dropdown, a
def view_pdb(seg_pair, a):
pdb_path = a.pairs_data[seg_pair].pdb
return view_pdb_html(pdb_path), a, pdb_path
def update_dropdown(x, label):
return gr.Dropdown.update(choices=x, label=label)
def filter_gene_records(cell, str):
if str == '':
return cell.gene_annot.groupby('gene_name')[['pred', 'obs', 'accessibility']].mean().reset_index().head(5), cell
df = cell.gene_annot.query(f"gene_name == '{str}'").groupby('gene_name')[['pred', 'obs', 'accessibility']].mean().reset_index().head(5)
return df, cell
def load_and_plot_celltype(celltype_name, GET_CONFIG, cell):
celltype_id = cell_type_name_to_id[celltype_name]
cell = GETCellType(celltype_id, GET_CONFIG)
cell.celltype_name = celltype_name
# gene_name.choices = sorted(gene_exp_table.gene_name.unique()
gene_exp_fig = cell.plotly_gene_exp()
gene_exp_table = cell.gene_annot.groupby('gene_name')[['pred', 'obs', 'accessibility']].mean().reset_index().head(5)
new_gene_dropdown = update_dropdown(sorted(cell.gene_annot.gene_name.unique()), "Gene name")
return gene_exp_fig, gene_exp_table, new_gene_dropdown, new_gene_dropdown, cell
def plot_gene_regions(cell, gene_name, plotly=True):
return cell.plot_gene_regions(gene_name, plotly=plotly), cell
def plot_gene_motifs(cell, gene_name, motif, overwrite=False):
return cell.plot_gene_motifs(gene_name, motif, overwrite=overwrite)[0], cell
def plot_motif_subnet(cell, motif_collection, m, type="neighbors", threshold=0.1):
return (
cell.plotly_motif_subnet(motif_collection, m, type=type, threshold=threshold),
cell,
)
def plot_gene_exp(cell, plotly=True):
return cell.plotly_gene_exp(plotly=plotly), cell
def plot_motif_corr(cell):
fig = Clustergram(
data=cell.gene_by_motif.corr,
column_labels=list(cell.gene_by_motif.corr.columns.values),
row_labels=list(cell.gene_by_motif.corr.index),
hidden_labels=["row", "col"],
link_method="ward",
display_ratio=0.1,
width=600,
height=350,
color_map="rdbu_r",
)
fig["layout"].update(coloraxis_showscale=False)
return fig, cell
if __name__ == "__main__":
with gr.Blocks(theme="sudeepshouche/minimalist") as demo:
seg_pairs = gr.State([""])
af = gr.State(None)
cell = gr.State(None)
gene_names = gr.State([""])
gr.Markdown(
"""# π GET: A Foundation Model of Transcription Across Human Cell Types π
Here we introduce GET, an innovative computational model aimed at understanding transcriptional regulation across 235 human fetal and adult cell types.
Built solely on chromatin accessibility and sequence data, GET exhibits unparalleled generalizability and accuracy in predicting gene expression, even in previously unstudied cell types.
The model adapts seamlessly across various sequencing platforms and assays, allowing inference of broad-spectrum regulatory activity.
We validate GET's efficacy through its superior prediction of lentivirus-based massive parallel reporter assay outcomes and its ability to identify previously elusive distant regulatory regions in fetal erythroblasts.
Moreover, our model reveals both universal and cell type-specific transcription factor interaction networks.
Utilizing this comprehensive catalog, we elucidate the functional significance of a previously unidentified germline coding variant in PAX5, a lymphoma-associated transcription factor.
Overall, GET serves as a robust, generalizable framework for understanding cell type-specific gene regulation and transcription factor interactions.
Dive deep into our live demo and experience a revolution in cellular transcription like never before. Here's what you can explore:
- π Prediction Performance: Choose your cell type and be amazed as we unveil a vivid plot comparing observed versus forecasted gene expression levels.
- 𧬠Cell-type Specific Regulatory Insights: Just pick a gene, and voilà ! Revel in intricate plots revealing the cell-type specific regulatory landscapes and motifs.
- π Motif Correlation & Causal Subnetworks: Engage with our intuitive heatmap to witness motif correlations. Go further - choose a motif, define your subnetwork preference, set an effect size threshold, and behold the magic unfold!
- π¬ Structural Atlas of Interactions: Step into the realm of transcription factor pairs. Experience heatmaps, pLDDT metrics, and more. And guess what? You can even download the PDB file for select segment pairs!
Stay tuned! We're set to dazzle you further as we launch our demo on Huggingface this week. Questions, thoughts, or moments of awe? Don't hesitate to reach out!
"""
)
with gr.Row() as row:
# Left column: Plot gene expression and gene regions
with gr.Column():
gr.Markdown(
"""
## π Prediction performance
This section enables you to select different cell types and generates a plot that compares observed gene expression levels to predicted ones. It's important to note that for cell types without available observed gene expression data, the plot will display a vertical line at 0, indicating the absence of empirical expression data for those particular cell types. This visualization helps assess the accuracy of gene expression predictions in the context of different cell types.
"""
)
celltype_name = gr.Dropdown(
label="Cell Type", choices=avaliable_celltypes, value='Fetal Astrocyte 1'
)
celltype_btn = gr.Button(value="Load & plot gene expression")
gene_exp_plot = gr.Plot(label="Gene expression prediction vs observation")
with gr.Row() as row:
gene_name = gr.Dropdown(value="BCL11A")
# Button to trigger the filter action
filter_btn = gr.Button("Filter table by gene name")
gene_exp_table = gr.Dataframe(
datatype=["str", "number", "number", "number"],
row_count=5,
col_count=(4, "fixed"),
label='Gene expression table',
max_rows=5
)
# Right column: Plot gene motifs
with gr.Column():
gr.Markdown(
"""
### 𧬠Cell-type specific regulatory inference
In this section, you can choose a specific gene and access visualizations of its cell-type specific regulatory regions and motifs that promote gene expression. When you hover over the highlighted regions (the top 10%), you'll be able to view information about the motifs present in those regions and their corresponding scores. This feature allows for a detailed exploration of the regulatory elements influencing the expression of the selected gene.
"""
)
gene_name_for_region = gr.Dropdown(
label="Get important regions or motifs for gene:", value="BCL11A"
)
with gr.Row() as row:
region_plot_btn = gr.Button(value="Regions")
motif_plot_btn = gr.Button(value="Motifs")
region_plot = gr.Plot(label="Important regions")
motif_plot = gr.Plot(label="Important motifs")
gr.Markdown(
"""
## π Motif correlation and causal subnetworks
Motif correlation, as it relates to a cell-type specific gene-by-motif matrix, signifies the examination of associations between specific DNA sequence motifs and the expression patterns of genes in a particular cell type. This analysis is grounded in the concept that a correlation between a motif and gene expression implies co-regulation of downstream target genes, suggesting functional interactions between the regulatory motif and the genes it influences.
In simpler terms, when you observe a motif having a strong positive correlation with the expression of certain genes in a specific cell type, it suggests that this motif is associated with the coordinated regulation of those genes. This correlation indicates that the motif likely plays a role in controlling the activity of those genes, possibly by acting as a binding site for transcription factors or other regulatory proteins. Conversely, a negative correlation might suggest that the motif is associated with the repression of those genes.
Overall, motif correlation analysis helps uncover potential regulatory relationships within a cell type by identifying motifs that are statistically linked to the expression patterns of genes. This can provide valuable insights into the functional interactions and regulatory mechanisms at play in that specific biological context.
"""
)
with gr.Row() as row:
with gr.Column():
clustergram_btn = gr.Button(value="Plot motif correlation heatmap")
clustergram_plot = gr.Plot(label="Motif correlation")
# Right column: Motif subnet plot
with gr.Column():
with gr.Row() as row:
motif_for_subnet = gr.Dropdown(
label="Motif causal subnetwork", choices=motif.cluster_names, value='KLF/SP/2'
)
subnet_type = gr.Dropdown(
label="Interaction type",
choices=["neighbors", "parents", "children"],
value="neighbors",
)
# slider for threshold 0.01-0.2
subnet_threshold = gr.Slider(
label="Threshold",
minimum=0.01,
maximum=0.25,
step=0.01,
value=0.1,
)
subnet_btn = gr.Button(value="Plot Motif Causal Subnetwork")
subnet_plot = gr.Plot(label="Motif Causal Subnetwork")
gr.Markdown(
"""
## π¬ Structural atlas of TF-TF and TF-EP300 interactions
This section allows you to explore transcription factor pairs within a causal network. You can visualize metrics like Heatmaps and pLDDT (predicted Local Distance Difference Test) for both proteins in the pair.
The first row displays the pLDDT segmentation plot for the two TFs, helping to identify protein disorder regions. Each TF is divided into disordered and ordered segments labeled numerically as ZFX_0, ZFX_1, etc., with disordered segments marked in red. Uniprot annotations are included if available.
The second row shows the interaction pLDDT plot. It compares pLDDT scores between segment pairs from AlphaFold2 predictions, indicating regions stabilized by TF interactions.
The third row presents a heatmap plot, including:
- *Interchain min pAE*: lower scores indicate stronger protein-protein interactions.
- *Mean pLDDT*: higher scores signify greater prediction confidence or (inverse-)disorderness.
- *ipTM*: higher scores reflect better predicted interaction quality by AlphaFold2.
- *pDockQ*: higher scores indicate improved predicted interaction quality.
You can download specific segment pair PDB files by clicking 'Get PDB.'
"""
)
with gr.Row() as row:
with gr.Column():
tf_pairs = gr.Dropdown(label="TF pair", choices=gene_pairs)
tf_pairs_btn = gr.Button(value="Load & Plot")
heatmap = gr.Plot(label="Heatmap")
with gr.Column():
segpair = gr.Dropdown(label="Seg pair")
segpair_btn = gr.Button(value="Get PDB")
pdb_html = gr.HTML(label="PDB HTML")
pdb_file = gr.File(label="Download PDB")
with gr.Row() as row:
with gr.Column():
protein1_plddt = gr.Plot(label="Protein 1 pLDDT")
interact_plddt1 = gr.Plot(label="Interact pLDDT 1")
with gr.Column():
protein2_plddt = gr.Plot(label="Protein 2 pLDDT")
interact_plddt2 = gr.Plot(label="Interact pLDDT 2")
tf_pairs_btn.click(
visualize_AF2,
inputs=[tf_pairs, af],
outputs=[
interact_plddt1,
interact_plddt2,
protein1_plddt,
protein2_plddt,
heatmap,
segpair,
af,
],
)
segpair_btn.click(
view_pdb, inputs=[segpair, af], outputs=[pdb_html, af, pdb_file]
)
celltype_btn.click(
load_and_plot_celltype,
inputs=[celltype_name, gr.State(GET_CONFIG), cell],
outputs=[gene_exp_plot, gene_exp_table, gene_name, gene_name_for_region, cell],
)
filter_btn.click(
filter_gene_records,
inputs=[cell, gene_name],
outputs=[gene_exp_table, cell],
)
region_plot_btn.click(
plot_gene_regions,
inputs=[cell, gene_name_for_region],
outputs=[region_plot, cell],
)
motif_plot_btn.click(
plot_gene_motifs,
inputs=[cell, gene_name_for_region, gr.State(motif)],
outputs=[motif_plot, cell],
)
clustergram_btn.click(
plot_motif_corr, inputs=[cell], outputs=[clustergram_plot, cell]
)
subnet_btn.click(
plot_motif_subnet,
inputs=[
cell,
gr.State(motif),
motif_for_subnet,
subnet_type,
subnet_threshold,
],
outputs=[subnet_plot, cell],
)
demo.launch(share=args.share, server_port=args.port)
|