Spaces:
Running
Running
File size: 11,816 Bytes
7b04c5f 8bdf52a 64cee5e 8bdf52a 690c5f2 f3ac683 7b04c5f 64cee5e 7b04c5f 5c01795 f3ac683 7b04c5f f097bca 7b04c5f d02ce4c 7b04c5f d02ce4c 7b04c5f 5c01795 7b04c5f 5c01795 f3ac683 7b04c5f f3ac683 7b04c5f 12761b6 8bdf52a 7b04c5f 598ad97 8bdf52a 690c5f2 598ad97 8bdf52a 690c5f2 8bdf52a 7b04c5f 8bdf52a 7b04c5f 2468b8b 7b04c5f 2468b8b 7b04c5f 8bdf52a 7b04c5f 8bdf52a 690c5f2 7b04c5f 12761b6 7b04c5f 12761b6 39718fc 690c5f2 7b04c5f 12761b6 690c5f2 7b04c5f 12761b6 690c5f2 7b04c5f 690c5f2 12761b6 7b04c5f 12761b6 690c5f2 8bdf52a 12761b6 690c5f2 7b04c5f cdb088d 7b04c5f cdb088d 7b04c5f 690c5f2 8bdf52a 12761b6 8bdf52a 690c5f2 cdb088d 7b04c5f 690c5f2 764b22c 7b04c5f 764b22c 7b04c5f 690c5f2 12761b6 690c5f2 7b04c5f cdb088d 7b04c5f 690c5f2 39718fc 690c5f2 12761b6 690c5f2 12761b6 764b22c 12761b6 690c5f2 7b04c5f 690c5f2 12761b6 7b04c5f 12761b6 690c5f2 cdb088d 690c5f2 764b22c 8bdf52a 764b22c 7b04c5f 764b22c 3ca22c6 764b22c 8bdf52a 2468b8b 3ca22c6 598ad97 7b04c5f 598ad97 7b04c5f 690c5f2 2468b8b 690c5f2 7b04c5f 39718fc 690c5f2 7b04c5f 690c5f2 8bdf52a f1710dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
# Demo app
from pathlib import Path
SETTINGS = {
"annotation_dir": str(Path("/app/.gcell_data") / "annotations"),
"genome_dir": str(Path("/app/.gcell_data") / "genomes"),
"cache_dir": str(Path("/app/.gcell_data") / "cache"),
}
from gcell._settings import update_settings
update_settings(SETTINGS)
import gradio as gr
import matplotlib.pyplot as plt
import pandas as pd
import s3fs
from gcell.cell.celltype import GETCellType
from gcell.config.config import load_config
from gcell.dna.nr_motif_v1 import NrMotifV1
from gcell.protein.af2 import AFPairseg
from gcell.utils.pdb_viewer import view_pdb_html
from genomespy import GenomeSpy
gs = GenomeSpy()
cfg = load_config("s3_interpret")
plt.rcParams["figure.dpi"] = 100
if cfg.s3_uri: # Use S3 path if exists
s3_file_sys = s3fs.S3FileSystem(anon=True)
cfg.celltype.data_dir = (
f"{cfg.s3_uri}/pretrain_human_bingren_shendure_apr2023/fetal_adult/"
)
cfg.celltype.interpret_dir = (
f"{cfg.s3_uri}/Interpretation_all_hg38_allembed_v4_natac/"
)
cfg.celltype.motif_dir = f"{cfg.s3_uri}/interpret_natac/motif-clustering/"
cfg.celltype.assets_dir = f"{cfg.s3_uri}/assets/"
cell_type_annot = pd.read_csv(
cfg.celltype.data_dir.split("fetal_adult")[0]
+ "data/cell_type_pretrain_human_bingren_shendure_apr2023.txt"
)
cell_type_id_to_name = dict(zip(cell_type_annot["id"], cell_type_annot["celltype"]))
cell_type_name_to_id = dict(zip(cell_type_annot["celltype"], cell_type_annot["id"]))
available_celltypes = sorted(
[
cell_type_id_to_name[f.split("/")[-1]]
for f in s3_file_sys.glob(cfg.celltype.interpret_dir + "*")
]
)
gene_pairs = s3_file_sys.glob(f"{cfg.s3_uri}/structures/causal/*")
gene_pairs = [Path(pair).name for pair in gene_pairs]
motif = NrMotifV1.load_from_pickle()
else:
raise ValueError("S3 URI is required")
def visualize_AF2(tf_pair, a):
"""
Visualize the AlphaFold2 structure of a transcription factor pair.
"""
strcture_dir = f"{cfg.s3_uri}/structures/causal/{tf_pair}"
fasta_dir = f"{cfg.s3_uri}/sequences/causal/{tf_pair}"
a = AFPairseg(strcture_dir, fasta_dir, s3_file_sys=s3_file_sys)
fig1 = a.plotly_plddt_gene1()
fig2 = a.plotly_plddt_gene2()
fig5, ax5 = a.plot_score_heatmap()
plt.tight_layout()
new_dropdown = update_dropdown(list(a.pairs_data.keys()), "Segment pair")
return fig1, fig2, fig5, new_dropdown, a
def view_pdb(seg_pair, a):
"""
View the PDB file of a transcription factor pair.
"""
pdb_path = a.pairs_data[seg_pair].pdb
if cfg.s3_uri:
bucket_name = f"{cfg.s3_uri}".split("//")[1].split("/")[0]
path_in_bucket = pdb_path.split("/", 1)[1]
file_name = pdb_path.split("/")[-1]
output_path = f"https://{bucket_name}.s3.amazonaws.com/{path_in_bucket}"
output_text = f"""
### Download PDB
[{file_name}]({output_path})
"""
else: # No download link if running locally
output_text = ""
return view_pdb_html(pdb_path, s3_file_sys=s3_file_sys), a, output_text
def update_dropdown(x, label):
"""
Update the dropdown menu.
"""
return gr.Dropdown(choices=x, label=label, interactive=True)
def load_and_plot_celltype(celltype_name, GET_CONFIG, cell, s3_file_sys=s3_file_sys):
"""
Load and plot the gene expression of a cell type.
"""
celltype_id = cell_type_name_to_id[celltype_name]
cell = GETCellType(celltype_id, GET_CONFIG, s3_file_sys=s3_file_sys)
cell.celltype_name = celltype_name
gene_exp_fig = cell.plotly_gene_exp()
return gene_exp_fig, cell
def plot_gene_regions(cell, gene_name, plotly: bool = True):
"""
Plot the important regions of a gene.
"""
return cell.plot_gene_regions(gene_name, plotly=plotly), cell
def plot_gene_motifs(cell, gene_name, motif, overwrite: bool = False):
"""
Plot the gene motifs of a gene.
"""
return cell.plot_gene_motifs(gene_name, motif, overwrite=overwrite)[0], cell
def plot_motif_subnet(
cell, motif_collection, m, type: str = "neighbors", threshold: float = 0.1
):
"""
Plot the motif subnet of a motif.
"""
return (
cell.plotly_motif_subnet(motif_collection, m, type=type, threshold=threshold),
cell,
)
def plot_gene_exp(cell, plotly: bool = True):
"""
Plot the gene expression of a cell type.
"""
return cell.plotly_gene_exp(plotly=plotly), cell
if __name__ == "__main__":
with gr.Blocks(theme="sudeepshouche/minimalist") as demo:
seg_pairs = gr.State([""])
af = gr.State(None)
cell = gr.State(None)
gr.Markdown(
"""# A Foundation Model of Transcription Across Human Cell Types
This is a demo of the results of the GET model.
Checkout our [paper](https://www.nature.com/articles/s41586-024-08391-z), [model package](https://github.com/GET-Foundation/get_model)
and [analysis package](https://github.com/GET-Foundation/gcell) for more details.
Pretrained models, training data, infered structures and regulatory information are hosted on a public [S3 bucket](s3://2023-get-xf2217/get_demo)
"""
)
with gr.Row() as row:
# Left column: Plot gene expression and gene regions
with gr.Column():
gr.Markdown(
"""
## 🔍 Prediction performance
This section enables you to select different cell types and generates a plot that compares observed
gene expression levels to predicted ones. It's important to note that for cell types without available
observed gene expression data, the plot will display a vertical line at 0, indicating the absence of
empirical expression data for those particular cell types. This visualization helps assess the accuracy
of gene expression predictions in the context of different cell types.
"""
)
celltype_name = gr.Dropdown(
label="Cell Type",
choices=available_celltypes,
value="Fetal Astrocyte 1",
)
celltype_btn = gr.Button(value="Load & plot gene expression")
gene_exp_plot = gr.Plot(
label="Gene expression prediction vs observation"
)
# Right column: Plot gene motifs
with gr.Column():
gr.Markdown(
"""
## 🧬 Cell-type specific regulatory inference
In this section, you can choose a specific gene and access visualizations of its cell-type specific regulatory
regions and motifs that promote gene expression. When you hover over the highlighted regions (the top 10%),
you'll be able to view information about the motifs present in those regions and their corresponding scores.
This feature allows for a detailed exploration of the regulatory elements influencing the expression of the selected gene.
"""
)
gene_name_for_region = gr.Textbox(
label="Get important regions or motifs for gene:", value="SOX2"
)
with gr.Row() as row:
region_plot_btn = gr.Button(value="Regions")
motif_plot_btn = gr.Button(value="Motifs")
region_plot = gr.Plot(label="Important regions")
motif_plot = gr.Plot(label="Important motifs")
gr.Markdown(
"""
## 🔗 Causal discovery on motif-motif interactions
This section allows you to explore the inferred (using [LiNGAM](https://jmlr.org/papers/volume7/shimizu06a/shimizu06a.pdf))
relationships between motifs in the selected cell type.
"""
)
with gr.Row() as row:
motif_for_subnet = gr.Dropdown(
label="Motif causal subnetwork",
choices=motif.cluster_names,
value="KLF/SP/2",
)
subnet_type = gr.Dropdown(
label="Interaction type",
choices=["neighbors", "parents", "children"],
value="neighbors",
)
# slider for threshold 0.01-0.2
subnet_threshold = gr.Slider(
label="Threshold",
minimum=0.01,
maximum=0.25,
step=0.01,
value=0.1,
)
subnet_btn = gr.Button(value="Plot Motif Causal Subnetwork")
subnet_plot = gr.Plot(label="Motif Causal Subnetwork")
gr.Markdown(
"""
## 🔬 Structural atlas of TF-TF and TF-EP300 interactions
This section allows you to explore transcription factor pairs within a causal network. You can visualize metrics like Heatmaps and pLDDT (predicted Local Distance Difference Test) for both proteins in the pair.
The first row displays the pLDDT segmentation plot for the two TFs, helping to identify protein disorder regions. Each TF is divided into disordered and ordered segments labeled numerically as ZFX_0, ZFX_1, etc., with disordered segments marked in red. Uniprot annotations are included if available.
The second row shows the interaction pLDDT plot. It compares pLDDT scores between segment pairs from AlphaFold2 predictions, indicating regions stabilized by TF interactions.
The third row presents a heatmap plot, including:
- *Interchain min pAE*: lower scores indicate stronger protein-protein interactions.
- *Mean pLDDT*: higher scores signify greater prediction confidence or (inverse-)disorderness.
- *ipTM*: higher scores reflect better predicted interaction quality by AlphaFold2.
- *pDockQ*: higher scores indicate improved predicted interaction quality.
You can download specific segment pair PDB files by clicking 'Get PDB.'
"""
)
with gr.Row() as row:
with gr.Column():
tf_pairs = gr.Dropdown(label="TF pair", choices=gene_pairs)
tf_pairs_btn = gr.Button(value="Load & Plot")
heatmap = gr.Plot(label="Heatmap")
with gr.Column():
segpair = gr.Dropdown(label="Seg pair")
segpair_btn = gr.Button(value="Get PDB")
pdb_html = gr.HTML(label="PDB HTML")
pdb_download = gr.Markdown(label="Download PDB")
with gr.Row() as row:
interact_plddt1 = gr.Plot(label="Interact pLDDT 1")
with gr.Row() as row:
interact_plddt2 = gr.Plot(label="Interact pLDDT 2")
tf_pairs_btn.click(
visualize_AF2,
inputs=[tf_pairs, af],
outputs=[
interact_plddt1,
interact_plddt2,
heatmap,
segpair,
af,
],
)
segpair_btn.click(
view_pdb, inputs=[segpair, af], outputs=[pdb_html, af, pdb_download]
)
celltype_btn.click(
load_and_plot_celltype,
inputs=[celltype_name, gr.State(cfg), cell],
outputs=[gene_exp_plot, cell],
)
region_plot_btn.click(
plot_gene_regions,
inputs=[cell, gene_name_for_region],
outputs=[region_plot, cell],
)
motif_plot_btn.click(
plot_gene_motifs,
inputs=[cell, gene_name_for_region, gr.State(motif)],
outputs=[motif_plot, cell],
)
subnet_btn.click(
plot_motif_subnet,
inputs=[
cell,
gr.State(motif),
motif_for_subnet,
subnet_type,
subnet_threshold,
],
outputs=[subnet_plot, cell],
)
demo.launch(server_name='0.0.0.0', share=cfg.share, server_port=cfg.port)
|