parokshsaxena commited on
Commit
5c5d918
·
1 Parent(s): c59ef03

copy from IDM viton repo

Browse files
Files changed (1) hide show
  1. README.md +206 -10
README.md CHANGED
@@ -1,12 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
- title: IDM VITON PARO
3
- emoji: 🔥
4
- colorFrom: red
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 4.36.1
8
- app_file: app.py
9
- pinned: false
10
- ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ <div align="center">
3
+ <h1>IDM-VTON: Improving Diffusion Models for Authentic Virtual Try-on in the Wild</h1>
4
+
5
+ <a href='https://idm-vton.github.io'><img src='https://img.shields.io/badge/Project-Page-green'></a>
6
+ <a href='https://arxiv.org/abs/2403.05139'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
7
+ <a href='https://huggingface.co/spaces/yisol/IDM-VTON'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Demo-yellow'></a>
8
+ <a href='https://huggingface.co/yisol/IDM-VTON'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a>
9
+
10
+
11
+ </div>
12
+
13
+ This is the official implementation of the paper ["Improving Diffusion Models for Authentic Virtual Try-on in the Wild"](https://arxiv.org/abs/2403.05139).
14
+
15
+ Star ⭐ us if you like it!
16
+
17
  ---
 
 
 
 
 
 
 
 
 
18
 
19
+
20
+ ![teaser2](assets/teaser2.png)&nbsp;
21
+ ![teaser](assets/teaser.png)&nbsp;
22
+
23
+
24
+ ## TODO LIST
25
+
26
+
27
+ - [x] demo model
28
+ - [x] inference code
29
+ - [ ] training code
30
+
31
+
32
+
33
+ ## Requirements
34
+
35
+ ```
36
+ git clone https://github.com/yisol/IDM-VTON.git
37
+ cd IDM-VTON
38
+
39
+ conda env create -f environment.yaml
40
+ conda activate idm
41
+ ```
42
+
43
+ ## Data preparation
44
+
45
+ ### VITON-HD
46
+ You can download VITON-HD dataset from [VITON-HD](https://github.com/shadow2496/VITON-HD).
47
+
48
+ After download VITON-HD dataset, move vitonhd_test_tagged.json into the test folder.
49
+
50
+ Structure of the Dataset directory should be as follows.
51
+
52
+ ```
53
+
54
+ train
55
+ |-- ...
56
+
57
+ test
58
+ |-- image
59
+ |-- image-densepose
60
+ |-- agnostic-mask
61
+ |-- cloth
62
+ |-- vitonhd_test_tagged.json
63
+
64
+ ```
65
+
66
+ ### DressCode
67
+ You can download DressCode dataset from [DressCode](https://github.com/aimagelab/dress-code).
68
+
69
+ We provide pre-computed densepose images and captions for garments [here](https://kaistackr-my.sharepoint.com/:u:/g/personal/cpis7_kaist_ac_kr/EaIPRG-aiRRIopz9i002FOwBDa-0-BHUKVZ7Ia5yAVVG3A?e=YxkAip).
70
+
71
+ We used [detectron2](https://github.com/facebookresearch/detectron2) for obtaining densepose images, refer [here](https://github.com/sangyun884/HR-VITON/issues/45) for more details.
72
+
73
+ After download the DressCode dataset, place image-densepose directories and caption text files as follows.
74
+
75
+ ```
76
+ DressCode
77
+ |-- dresses
78
+ |-- images
79
+ |-- image-densepose
80
+ |-- dc_caption.txt
81
+ |-- ...
82
+ |-- lower_body
83
+ |-- images
84
+ |-- image-densepose
85
+ |-- dc_caption.txt
86
+ |-- ...
87
+ |-- upper_body
88
+ |-- images
89
+ |-- image-densepose
90
+ |-- dc_caption.txt
91
+ |-- ...
92
+ ```
93
+
94
+
95
+ ## Inference
96
+
97
+
98
+ ### VITON-HD
99
+
100
+ Inference using python file with arguments,
101
+
102
+ ```
103
+ accelerate launch inference.py \
104
+ --width 768 --height 1024 --num_inference_steps 30 \
105
+ --output_dir "result" \
106
+ --unpaired \
107
+ --data_dir "DATA_DIR" \
108
+ --seed 42 \
109
+ --test_batch_size 2 \
110
+ --guidance_scale 2.0
111
+ ```
112
+
113
+ or, you can simply run with the script file.
114
+
115
+ ```
116
+ sh inference.sh
117
+ ```
118
+
119
+ ### DressCode
120
+
121
+ For DressCode dataset, put the category you want to generate images via category argument,
122
+ ```
123
+ accelerate launch inference_dc.py \
124
+ --width 768 --height 1024 --num_inference_steps 30 \
125
+ --output_dir "result" \
126
+ --unpaired \
127
+ --data_dir "DATA_DIR" \
128
+ --seed 42
129
+ --test_batch_size 2
130
+ --guidance_scale 2.0
131
+ --category "upper_body"
132
+ ```
133
+
134
+ or, you can simply run with the script file.
135
+ ```
136
+ sh inference.sh
137
+ ```
138
+
139
+ ## Start a local gradio demo <a href='https://github.com/gradio-app/gradio'><img src='https://img.shields.io/github/stars/gradio-app/gradio'></a>
140
+
141
+ Download checkpoints for human parsing [here](https://huggingface.co/spaces/yisol/IDM-VTON-local/tree/main/ckpt).
142
+
143
+ Place the checkpoints under the ckpt folder.
144
+ ```
145
+ ckpt
146
+ |-- densepose
147
+ |-- model_final_162be9.pkl
148
+ |-- humanparsing
149
+ |-- parsing_atr.onnx
150
+ |-- parsing_lip.onnx
151
+
152
+ |-- openpose
153
+ |-- ckpts
154
+ |-- body_pose_model.pth
155
+
156
+ ```
157
+
158
+
159
+
160
+
161
+ Run the following command:
162
+
163
+ ```python
164
+ python gradio_demo/app.py
165
+ ```
166
+
167
+
168
+
169
+
170
+
171
+
172
+ ## Acknowledgements
173
+
174
+
175
+ Thanks [ZeroGPU](https://huggingface.co/zero-gpu-explorers) for providing free GPU.
176
+
177
+ Thanks [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter) for base codes.
178
+
179
+ Thanks [OOTDiffusion](https://github.com/levihsu/OOTDiffusion) and [DCI-VTON](https://github.com/bcmi/DCI-VTON-Virtual-Try-On) for masking generation.
180
+
181
+ Thanks [SCHP](https://github.com/GoGoDuck912/Self-Correction-Human-Parsing) for human segmentation.
182
+
183
+ Thanks [Densepose](https://github.com/facebookresearch/DensePose) for human densepose.
184
+
185
+
186
+
187
+ ## Star History
188
+
189
+ [![Star History Chart](https://api.star-history.com/svg?repos=yisol/IDM-VTON&type=Date)](https://star-history.com/#yisol/IDM-VTON&Date)
190
+
191
+
192
+
193
+ ## Citation
194
+ ```
195
+ @article{choi2024improving,
196
+ title={Improving Diffusion Models for Virtual Try-on},
197
+ author={Choi, Yisol and Kwak, Sangkyung and Lee, Kyungmin and Choi, Hyungwon and Shin, Jinwoo},
198
+ journal={arXiv preprint arXiv:2403.05139},
199
+ year={2024}
200
+ }
201
+ ```
202
+
203
+
204
+
205
+ ## License
206
+ The codes and checkpoints in this repository are under the [CC BY-NC-SA 4.0 license](https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
207
+
208
+