geyik2 commited on
Commit
457021a
·
verified ·
1 Parent(s): a3ef363

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +329 -0
  2. requirements.txt +34 -0
app.py ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ from gradio_litmodel3d import LitModel3D
4
+ import os
5
+ import shutil
6
+ import random
7
+ import uuid
8
+ from datetime import datetime
9
+ from diffusers import DiffusionPipeline
10
+
11
+ os.environ['SPCONV_ALGO'] = 'native'
12
+ from typing import *
13
+ import torch
14
+ import numpy as np
15
+ import imageio
16
+ from easydict import EasyDict as edict
17
+ from PIL import Image
18
+ from trellis.pipelines import TrellisImageTo3DPipeline
19
+ from trellis.representations import Gaussian, MeshExtractResult
20
+ from trellis.utils import render_utils, postprocessing_utils
21
+
22
+ NUM_INFERENCE_STEPS = 8
23
+
24
+ huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
25
+ # Constants
26
+ MAX_SEED = np.iinfo(np.int32).max
27
+ TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
28
+ os.makedirs(TMP_DIR, exist_ok=True)
29
+
30
+ # Create permanent storage directory for Flux generated images
31
+ SAVE_DIR = "saved_images"
32
+ if not os.path.exists(SAVE_DIR):
33
+ os.makedirs(SAVE_DIR, exist_ok=True)
34
+
35
+ # Initialize device
36
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
37
+
38
+ # Initialize Flux pipeline
39
+ flux_pipeline = DiffusionPipeline.from_pretrained(
40
+ "black-forest-labs/FLUX.1-dev",
41
+ torch_dtype=torch.float16,
42
+ variant="fp16",
43
+ use_safetensors=True,
44
+ local_files_only=False
45
+ ).to(device)
46
+
47
+ # Initialize TRELLIS pipeline
48
+ trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained(
49
+ "JeffreyXiang/TRELLIS-image-large",
50
+ torch_dtype=torch.float16,
51
+ variant="fp16",
52
+ use_safetensors=True,
53
+ local_files_only=False
54
+ ).to(device)
55
+
56
+ def start_session(req: gr.Request):
57
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
58
+ os.makedirs(user_dir, exist_ok=True)
59
+
60
+ def end_session(req: gr.Request):
61
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
62
+ shutil.rmtree(user_dir)
63
+
64
+ def preprocess_image(image: Image.Image) -> Image.Image:
65
+ processed_image = trellis_pipeline.preprocess_image(image)
66
+ return processed_image
67
+
68
+ def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
69
+ return {
70
+ 'gaussian': {
71
+ **gs.init_params,
72
+ '_xyz': gs._xyz.cpu().numpy(),
73
+ '_features_dc': gs._features_dc.cpu().numpy(),
74
+ '_scaling': gs._scaling.cpu().numpy(),
75
+ '_rotation': gs._rotation.cpu().numpy(),
76
+ '_opacity': gs._opacity.cpu().numpy(),
77
+ },
78
+ 'mesh': {
79
+ 'vertices': mesh.vertices.cpu().numpy(),
80
+ 'faces': mesh.faces.cpu().numpy(),
81
+ },
82
+ }
83
+
84
+ def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
85
+ gs = Gaussian(
86
+ aabb=state['gaussian']['aabb'],
87
+ sh_degree=state['gaussian']['sh_degree'],
88
+ mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
89
+ scaling_bias=state['gaussian']['scaling_bias'],
90
+ opacity_bias=state['gaussian']['opacity_bias'],
91
+ scaling_activation=state['gaussian']['scaling_activation'],
92
+ )
93
+ gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
94
+ gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
95
+ gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
96
+ gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
97
+ gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
98
+
99
+ mesh = edict(
100
+ vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
101
+ faces=torch.tensor(state['mesh']['faces'], device='cuda'),
102
+ )
103
+
104
+ return gs, mesh
105
+
106
+ def get_seed(randomize_seed: bool, seed: int) -> int:
107
+ return np.random.randint(0, MAX_SEED) if randomize_seed else seed
108
+
109
+ @spaces.GPU
110
+ def generate_flux_image(
111
+ prompt: str,
112
+ seed: int,
113
+ randomize_seed: bool,
114
+ width: int,
115
+ height: int,
116
+ guidance_scale: float,
117
+ progress: gr.Progress = gr.Progress(track_tqdm=True),
118
+ ) -> Image.Image:
119
+ """Generate image using Flux pipeline"""
120
+ if randomize_seed:
121
+ seed = random.randint(0, MAX_SEED)
122
+ generator = torch.Generator(device=device).manual_seed(seed)
123
+ prompt = "wbgmsst, " + prompt + ", 3D isometric, white background"
124
+ image = flux_pipeline(
125
+ prompt=prompt,
126
+ guidance_scale=guidance_scale,
127
+ num_inference_steps=NUM_INFERENCE_STEPS,
128
+ width=width,
129
+ height=height,
130
+ generator=generator,
131
+ ).images[0]
132
+
133
+ # Save the generated image
134
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
135
+ unique_id = str(uuid.uuid4())[:8]
136
+ filename = f"{timestamp}_{unique_id}.png"
137
+ filepath = os.path.join(SAVE_DIR, filename)
138
+ image.save(filepath)
139
+
140
+ return image
141
+
142
+ @spaces.GPU
143
+ def image_to_3d(
144
+ image: Image.Image,
145
+ seed: int,
146
+ ss_guidance_strength: float,
147
+ ss_sampling_steps: int,
148
+ slat_guidance_strength: float,
149
+ slat_sampling_steps: int,
150
+ req: gr.Request,
151
+ ) -> Tuple[dict, str]:
152
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
153
+ outputs = trellis_pipeline.run(
154
+ image,
155
+ seed=seed,
156
+ formats=["gaussian", "mesh"],
157
+ preprocess_image=False,
158
+ sparse_structure_sampler_params={
159
+ "steps": ss_sampling_steps,
160
+ "cfg_strength": ss_guidance_strength,
161
+ },
162
+ slat_sampler_params={
163
+ "steps": slat_sampling_steps,
164
+ "cfg_strength": slat_guidance_strength,
165
+ },
166
+ )
167
+ video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
168
+ video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
169
+ video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
170
+ video_path = os.path.join(user_dir, 'sample.mp4')
171
+ imageio.mimsave(video_path, video, fps=15)
172
+ state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
173
+ torch.cuda.empty_cache()
174
+ return state, video_path
175
+
176
+ @spaces.GPU(duration=90)
177
+ def extract_glb(
178
+ state: dict,
179
+ mesh_simplify: float,
180
+ texture_size: int,
181
+ req: gr.Request,
182
+ ) -> Tuple[str, str]:
183
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
184
+ gs, mesh = unpack_state(state)
185
+ glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
186
+ glb_path = os.path.join(user_dir, 'sample.glb')
187
+ glb.export(glb_path)
188
+ torch.cuda.empty_cache()
189
+ return glb_path, glb_path
190
+
191
+ @spaces.GPU
192
+ def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
193
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
194
+ gs, _ = unpack_state(state)
195
+ gaussian_path = os.path.join(user_dir, 'sample.ply')
196
+ gs.save_ply(gaussian_path)
197
+ torch.cuda.empty_cache()
198
+ return gaussian_path, gaussian_path
199
+
200
+ # Gradio Interface
201
+ with gr.Blocks() as demo:
202
+ gr.Markdown("""
203
+ ## Game Asset Generation to 3D with FLUX and TRELLIS
204
+ * Enter a prompt to generate a game asset image, then convert it to 3D
205
+ * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
206
+ * [TRELLIS Model](https://huggingface.co/JeffreyXiang/TRELLIS-image-large) [Trellis Github](https://github.com/microsoft/TRELLIS) [Flux-Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)
207
+ * [Flux Game Assets LoRA](https://huggingface.co/gokaygokay/Flux-Game-Assets-LoRA-v2) [Hyper FLUX 8Steps LoRA](https://huggingface.co/ByteDance/Hyper-SD) [safetensors to GGUF for Flux](https://github.com/ruSauron/to-gguf-bat) [Thanks to John6666](https://huggingface.co/John6666)
208
+ """)
209
+
210
+ with gr.Row():
211
+ with gr.Column():
212
+ # Flux image generation inputs
213
+ prompt = gr.Text(label="Prompt", placeholder="Enter your game asset description")
214
+
215
+ with gr.Accordion("Generation Settings", open=False):
216
+ seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1)
217
+ randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
218
+ with gr.Row():
219
+ width = gr.Slider(512, 1024, label="Width", value=1024, step=16)
220
+ height = gr.Slider(512, 1024, label="Height", value=1024, step=16)
221
+ with gr.Row():
222
+ guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
223
+ # num_inference_steps = gr.Slider(1, 50, label="Steps", value=8, step=1)
224
+
225
+ with gr.Accordion("3D Generation Settings", open=False):
226
+ gr.Markdown("Stage 1: Sparse Structure Generation")
227
+ with gr.Row():
228
+ ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
229
+ ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
230
+ gr.Markdown("Stage 2: Structured Latent Generation")
231
+ with gr.Row():
232
+ slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
233
+ slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
234
+
235
+ generate_btn = gr.Button("Generate")
236
+
237
+ with gr.Accordion("GLB Extraction Settings", open=False):
238
+ mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
239
+ texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
240
+
241
+ with gr.Row():
242
+ extract_glb_btn = gr.Button("Extract GLB", interactive=False)
243
+ extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
244
+
245
+ with gr.Column():
246
+ generated_image = gr.Image(label="Generated Asset", type="pil")
247
+
248
+ with gr.Column():
249
+
250
+ video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
251
+ model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=8.0, height=400)
252
+
253
+ with gr.Row():
254
+ download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
255
+ download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
256
+
257
+ output_buf = gr.State()
258
+
259
+ # Event handlers
260
+ demo.load(start_session)
261
+ demo.unload(end_session)
262
+
263
+ generate_btn.click(
264
+ generate_flux_image,
265
+ inputs=[prompt, seed, randomize_seed, width, height, guidance_scale],
266
+ outputs=[generated_image],
267
+ ).then(
268
+ image_to_3d,
269
+ inputs=[generated_image, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
270
+ outputs=[output_buf, video_output],
271
+ ).then(
272
+ lambda: (True, True),
273
+ outputs=[extract_glb_btn, extract_gs_btn]
274
+ )
275
+
276
+ extract_glb_btn.click(
277
+ extract_glb,
278
+ inputs=[output_buf, mesh_simplify, texture_size],
279
+ outputs=[model_output, download_glb]
280
+ ).then(
281
+ lambda: True,
282
+ outputs=[download_glb]
283
+ )
284
+
285
+ extract_gs_btn.click(
286
+ extract_gaussian,
287
+ inputs=[output_buf],
288
+ outputs=[model_output, download_gs]
289
+ ).then(
290
+ lambda: True,
291
+ outputs=[download_gs]
292
+ )
293
+
294
+ model_output.clear(
295
+ lambda: gr.Button(interactive=False),
296
+ outputs=[download_glb],
297
+ )
298
+
299
+ # Initialize both pipelines
300
+ if __name__ == "__main__":
301
+ from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, GGUFQuantizationConfig
302
+ from transformers import T5EncoderModel, BitsAndBytesConfig as BitsAndBytesConfigTF
303
+
304
+ # Initialize Flux pipeline
305
+ device = "cuda" if torch.cuda.is_available() else "cpu"
306
+ huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
307
+
308
+ dtype = torch.bfloat16
309
+ file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/hyperflux_00001_.q8_0.gguf"
310
+ file_url = file_url.replace("/resolve/main/", "/blob/main/").replace("?download=true", "")
311
+ single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
312
+ quantization_config_tf = BitsAndBytesConfigTF(load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16)
313
+ text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
314
+ if ".gguf" in file_url:
315
+ transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", quantization_config=GGUFQuantizationConfig(compute_dtype=dtype), torch_dtype=dtype, config=single_file_base_model)
316
+ else:
317
+ quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16, token=huggingface_token)
318
+ transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
319
+ flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, token=huggingface_token)
320
+ flux_pipeline.to("cuda")
321
+ # Initialize Trellis pipeline
322
+ trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
323
+ trellis_pipeline.cuda()
324
+ try:
325
+ trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
326
+ except:
327
+ pass
328
+
329
+ demo.queue(max_size=10).launch()
requirements.txt ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu121
2
+ --find-links https://download.pytorch.org/whl/torch_stable.html
3
+
4
+ torch==2.4.0+cu121
5
+ torchvision==0.19.0+cu121
6
+ numpy>=1.24.0
7
+ pillow==10.4.0
8
+ imageio==2.36.1
9
+ imageio-ffmpeg==0.5.1
10
+ tqdm==4.67.1
11
+ easydict==1.13
12
+ opencv-python-headless==4.10.0.84
13
+ scipy==1.14.1
14
+ rembg==2.0.60
15
+ onnxruntime-gpu==1.16.3
16
+ trimesh==4.5.3
17
+ xatlas==0.0.9
18
+ pyvista==0.44.2
19
+ pymeshfix==0.17.0
20
+ igraph==0.11.8
21
+ git+https://github.com/EasternJournalist/utils3d.git@9a4eb15e4021b67b12c460c7057d642626897ec8
22
+ xformers==0.0.22
23
+ spconv-cu121==2.3.6
24
+ transformers==4.36.2
25
+ gradio==4.44.1
26
+ gradio_litmodel3d==0.0.1
27
+ diff-gaussian-rasterization @ https://huggingface.co/spaces/JeffreyXiang/TRELLIS/resolve/main/wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl
28
+ nvdiffrast @ https://huggingface.co/spaces/JeffreyXiang/TRELLIS/resolve/main/wheels/nvdiffrast-0.3.3-cp310-cp310-linux_x86_64.whl
29
+ accelerate==0.25.0
30
+ diffusers==0.25.0
31
+ peft==0.7.1
32
+ sentencepiece==0.1.99
33
+ bitsandbytes==0.41.3
34
+ gguf==0.6.0