geyik2 commited on
Commit
ee1b705
·
verified ·
1 Parent(s): 578ab62

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +327 -0
  2. requirements.txt +32 -0
app.py ADDED
@@ -0,0 +1,327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ from gradio_litmodel3d import LitModel3D
4
+ import os
5
+ import shutil
6
+ import random
7
+ import uuid
8
+ from datetime import datetime
9
+ from diffusers import DiffusionPipeline
10
+
11
+ os.environ['SPCONV_ALGO'] = 'native'
12
+ from typing import *
13
+ import torch
14
+ import numpy as np
15
+ import imageio
16
+ from easydict import EasyDict as edict
17
+ from PIL import Image
18
+ from trellis.pipelines import TrellisImageTo3DPipeline
19
+ from trellis.representations import Gaussian, MeshExtractResult
20
+ from trellis.utils import render_utils, postprocessing_utils
21
+
22
+ NUM_INFERENCE_STEPS = 8
23
+
24
+ huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
25
+ # Constants
26
+ MAX_SEED = np.iinfo(np.int32).max
27
+ TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
28
+ os.makedirs(TMP_DIR, exist_ok=True)
29
+
30
+ # Create permanent storage directory for Flux generated images
31
+ SAVE_DIR = "saved_images"
32
+ if not os.path.exists(SAVE_DIR):
33
+ os.makedirs(SAVE_DIR, exist_ok=True)
34
+
35
+ # Initialize device
36
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
37
+
38
+ # Initialize Flux pipeline
39
+ flux_pipeline = DiffusionPipeline.from_pretrained(
40
+ "black-forest-labs/FLUX.1-dev",
41
+ torch_dtype=torch.float16,
42
+ variant="fp16",
43
+ use_safetensors=True
44
+ ).to(device)
45
+
46
+ # Initialize TRELLIS pipeline
47
+ trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained(
48
+ "JeffreyXiang/TRELLIS-image-large",
49
+ torch_dtype=torch.float16,
50
+ variant="fp16",
51
+ use_safetensors=True
52
+ ).to(device)
53
+
54
+ def start_session(req: gr.Request):
55
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
56
+ os.makedirs(user_dir, exist_ok=True)
57
+
58
+ def end_session(req: gr.Request):
59
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
60
+ shutil.rmtree(user_dir)
61
+
62
+ def preprocess_image(image: Image.Image) -> Image.Image:
63
+ processed_image = trellis_pipeline.preprocess_image(image)
64
+ return processed_image
65
+
66
+ def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
67
+ return {
68
+ 'gaussian': {
69
+ **gs.init_params,
70
+ '_xyz': gs._xyz.cpu().numpy(),
71
+ '_features_dc': gs._features_dc.cpu().numpy(),
72
+ '_scaling': gs._scaling.cpu().numpy(),
73
+ '_rotation': gs._rotation.cpu().numpy(),
74
+ '_opacity': gs._opacity.cpu().numpy(),
75
+ },
76
+ 'mesh': {
77
+ 'vertices': mesh.vertices.cpu().numpy(),
78
+ 'faces': mesh.faces.cpu().numpy(),
79
+ },
80
+ }
81
+
82
+ def unpack_state(state: dict) -> Tuple[Gaussian, edict]:
83
+ gs = Gaussian(
84
+ aabb=state['gaussian']['aabb'],
85
+ sh_degree=state['gaussian']['sh_degree'],
86
+ mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
87
+ scaling_bias=state['gaussian']['scaling_bias'],
88
+ opacity_bias=state['gaussian']['opacity_bias'],
89
+ scaling_activation=state['gaussian']['scaling_activation'],
90
+ )
91
+ gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
92
+ gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
93
+ gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
94
+ gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
95
+ gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
96
+
97
+ mesh = edict(
98
+ vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
99
+ faces=torch.tensor(state['mesh']['faces'], device='cuda'),
100
+ )
101
+
102
+ return gs, mesh
103
+
104
+ def get_seed(randomize_seed: bool, seed: int) -> int:
105
+ return np.random.randint(0, MAX_SEED) if randomize_seed else seed
106
+
107
+ @spaces.GPU
108
+ def generate_flux_image(
109
+ prompt: str,
110
+ seed: int,
111
+ randomize_seed: bool,
112
+ width: int,
113
+ height: int,
114
+ guidance_scale: float,
115
+ progress: gr.Progress = gr.Progress(track_tqdm=True),
116
+ ) -> Image.Image:
117
+ """Generate image using Flux pipeline"""
118
+ if randomize_seed:
119
+ seed = random.randint(0, MAX_SEED)
120
+ generator = torch.Generator(device=device).manual_seed(seed)
121
+ prompt = "wbgmsst, " + prompt + ", 3D isometric, white background"
122
+ image = flux_pipeline(
123
+ prompt=prompt,
124
+ guidance_scale=guidance_scale,
125
+ num_inference_steps=NUM_INFERENCE_STEPS,
126
+ width=width,
127
+ height=height,
128
+ generator=generator,
129
+ ).images[0]
130
+
131
+ # Save the generated image
132
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
133
+ unique_id = str(uuid.uuid4())[:8]
134
+ filename = f"{timestamp}_{unique_id}.png"
135
+ filepath = os.path.join(SAVE_DIR, filename)
136
+ image.save(filepath)
137
+
138
+ return image
139
+
140
+ @spaces.GPU
141
+ def image_to_3d(
142
+ image: Image.Image,
143
+ seed: int,
144
+ ss_guidance_strength: float,
145
+ ss_sampling_steps: int,
146
+ slat_guidance_strength: float,
147
+ slat_sampling_steps: int,
148
+ req: gr.Request,
149
+ ) -> Tuple[dict, str]:
150
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
151
+ outputs = trellis_pipeline.run(
152
+ image,
153
+ seed=seed,
154
+ formats=["gaussian", "mesh"],
155
+ preprocess_image=False,
156
+ sparse_structure_sampler_params={
157
+ "steps": ss_sampling_steps,
158
+ "cfg_strength": ss_guidance_strength,
159
+ },
160
+ slat_sampler_params={
161
+ "steps": slat_sampling_steps,
162
+ "cfg_strength": slat_guidance_strength,
163
+ },
164
+ )
165
+ video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
166
+ video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
167
+ video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
168
+ video_path = os.path.join(user_dir, 'sample.mp4')
169
+ imageio.mimsave(video_path, video, fps=15)
170
+ state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
171
+ torch.cuda.empty_cache()
172
+ return state, video_path
173
+
174
+ @spaces.GPU(duration=90)
175
+ def extract_glb(
176
+ state: dict,
177
+ mesh_simplify: float,
178
+ texture_size: int,
179
+ req: gr.Request,
180
+ ) -> Tuple[str, str]:
181
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
182
+ gs, mesh = unpack_state(state)
183
+ glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
184
+ glb_path = os.path.join(user_dir, 'sample.glb')
185
+ glb.export(glb_path)
186
+ torch.cuda.empty_cache()
187
+ return glb_path, glb_path
188
+
189
+ @spaces.GPU
190
+ def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
191
+ user_dir = os.path.join(TMP_DIR, str(req.session_hash))
192
+ gs, _ = unpack_state(state)
193
+ gaussian_path = os.path.join(user_dir, 'sample.ply')
194
+ gs.save_ply(gaussian_path)
195
+ torch.cuda.empty_cache()
196
+ return gaussian_path, gaussian_path
197
+
198
+ # Gradio Interface
199
+ with gr.Blocks() as demo:
200
+ gr.Markdown("""
201
+ ## Game Asset Generation to 3D with FLUX and TRELLIS
202
+ * Enter a prompt to generate a game asset image, then convert it to 3D
203
+ * If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
204
+ * [TRELLIS Model](https://huggingface.co/JeffreyXiang/TRELLIS-image-large) [Trellis Github](https://github.com/microsoft/TRELLIS) [Flux-Dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)
205
+ * [Flux Game Assets LoRA](https://huggingface.co/gokaygokay/Flux-Game-Assets-LoRA-v2) [Hyper FLUX 8Steps LoRA](https://huggingface.co/ByteDance/Hyper-SD) [safetensors to GGUF for Flux](https://github.com/ruSauron/to-gguf-bat) [Thanks to John6666](https://huggingface.co/John6666)
206
+ """)
207
+
208
+ with gr.Row():
209
+ with gr.Column():
210
+ # Flux image generation inputs
211
+ prompt = gr.Text(label="Prompt", placeholder="Enter your game asset description")
212
+
213
+ with gr.Accordion("Generation Settings", open=False):
214
+ seed = gr.Slider(0, MAX_SEED, label="Seed", value=42, step=1)
215
+ randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
216
+ with gr.Row():
217
+ width = gr.Slider(512, 1024, label="Width", value=1024, step=16)
218
+ height = gr.Slider(512, 1024, label="Height", value=1024, step=16)
219
+ with gr.Row():
220
+ guidance_scale = gr.Slider(0.0, 10.0, label="Guidance Scale", value=3.5, step=0.1)
221
+ # num_inference_steps = gr.Slider(1, 50, label="Steps", value=8, step=1)
222
+
223
+ with gr.Accordion("3D Generation Settings", open=False):
224
+ gr.Markdown("Stage 1: Sparse Structure Generation")
225
+ with gr.Row():
226
+ ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
227
+ ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
228
+ gr.Markdown("Stage 2: Structured Latent Generation")
229
+ with gr.Row():
230
+ slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
231
+ slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
232
+
233
+ generate_btn = gr.Button("Generate")
234
+
235
+ with gr.Accordion("GLB Extraction Settings", open=False):
236
+ mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
237
+ texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
238
+
239
+ with gr.Row():
240
+ extract_glb_btn = gr.Button("Extract GLB", interactive=False)
241
+ extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
242
+
243
+ with gr.Column():
244
+ generated_image = gr.Image(label="Generated Asset", type="pil")
245
+
246
+ with gr.Column():
247
+
248
+ video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True)
249
+ model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=8.0, height=400)
250
+
251
+ with gr.Row():
252
+ download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
253
+ download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
254
+
255
+ output_buf = gr.State()
256
+
257
+ # Event handlers
258
+ demo.load(start_session)
259
+ demo.unload(end_session)
260
+
261
+ generate_btn.click(
262
+ generate_flux_image,
263
+ inputs=[prompt, seed, randomize_seed, width, height, guidance_scale],
264
+ outputs=[generated_image],
265
+ ).then(
266
+ image_to_3d,
267
+ inputs=[generated_image, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
268
+ outputs=[output_buf, video_output],
269
+ ).then(
270
+ lambda: (True, True),
271
+ outputs=[extract_glb_btn, extract_gs_btn]
272
+ )
273
+
274
+ extract_glb_btn.click(
275
+ extract_glb,
276
+ inputs=[output_buf, mesh_simplify, texture_size],
277
+ outputs=[model_output, download_glb]
278
+ ).then(
279
+ lambda: True,
280
+ outputs=[download_glb]
281
+ )
282
+
283
+ extract_gs_btn.click(
284
+ extract_gaussian,
285
+ inputs=[output_buf],
286
+ outputs=[model_output, download_gs]
287
+ ).then(
288
+ lambda: True,
289
+ outputs=[download_gs]
290
+ )
291
+
292
+ model_output.clear(
293
+ lambda: gr.Button(interactive=False),
294
+ outputs=[download_glb],
295
+ )
296
+
297
+ # Initialize both pipelines
298
+ if __name__ == "__main__":
299
+ from diffusers import FluxTransformer2DModel, FluxPipeline, BitsAndBytesConfig, GGUFQuantizationConfig
300
+ from transformers import T5EncoderModel, BitsAndBytesConfig as BitsAndBytesConfigTF
301
+
302
+ # Initialize Flux pipeline
303
+ device = "cuda" if torch.cuda.is_available() else "cpu"
304
+ huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
305
+
306
+ dtype = torch.bfloat16
307
+ file_url = "https://huggingface.co/gokaygokay/flux-game/blob/main/hyperflux_00001_.q8_0.gguf"
308
+ file_url = file_url.replace("/resolve/main/", "/blob/main/").replace("?download=true", "")
309
+ single_file_base_model = "camenduru/FLUX.1-dev-diffusers"
310
+ quantization_config_tf = BitsAndBytesConfigTF(load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16)
311
+ text_encoder_2 = T5EncoderModel.from_pretrained(single_file_base_model, subfolder="text_encoder_2", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config_tf, token=huggingface_token)
312
+ if ".gguf" in file_url:
313
+ transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", quantization_config=GGUFQuantizationConfig(compute_dtype=dtype), torch_dtype=dtype, config=single_file_base_model)
314
+ else:
315
+ quantization_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16, token=huggingface_token)
316
+ transformer = FluxTransformer2DModel.from_single_file(file_url, subfolder="transformer", torch_dtype=dtype, config=single_file_base_model, quantization_config=quantization_config, token=huggingface_token)
317
+ flux_pipeline = FluxPipeline.from_pretrained(single_file_base_model, transformer=transformer, text_encoder_2=text_encoder_2, torch_dtype=dtype, token=huggingface_token)
318
+ flux_pipeline.to("cuda")
319
+ # Initialize Trellis pipeline
320
+ trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
321
+ trellis_pipeline.cuda()
322
+ try:
323
+ trellis_pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8)))
324
+ except:
325
+ pass
326
+
327
+ demo.queue(max_size=10).launch()
requirements.txt ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ --extra-index-url https://download.pytorch.org/whl/cu121
2
+
3
+ torch==2.4.0
4
+ torchvision==0.19.0
5
+ pillow==10.4.0
6
+ imageio==2.36.1
7
+ imageio-ffmpeg==0.5.1
8
+ tqdm==4.67.1
9
+ easydict==1.13
10
+ opencv-python-headless==4.10.0.84
11
+ scipy==1.14.1
12
+ rembg==2.0.60
13
+ onnxruntime==1.20.1
14
+ trimesh==4.5.3
15
+ xatlas==0.0.9
16
+ pyvista==0.44.2
17
+ pymeshfix==0.17.0
18
+ igraph==0.11.8
19
+ git+https://github.com/EasternJournalist/utils3d.git@9a4eb15e4021b67b12c460c7057d642626897ec8
20
+ xformers==0.0.27.post2
21
+ spconv-cu120==2.3.6
22
+ transformers==4.46.3
23
+ gradio_litmodel3d==0.0.1
24
+ flash-attn==2.7.0.post2
25
+ diff-gaussian-rasterization @ https://huggingface.co/spaces/JeffreyXiang/TRELLIS/resolve/main/wheels/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl
26
+ nvdiffrast @ https://huggingface.co/spaces/JeffreyXiang/TRELLIS/resolve/main/wheels/nvdiffrast-0.3.3-cp310-cp310-linux_x86_64.whl
27
+ accelerate
28
+ diffusers
29
+ peft
30
+ sentencepiece
31
+ bitsandbytes
32
+ gguf