Spaces:
Sleeping
Sleeping
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# MASt3R heads | |
# -------------------------------------------------------- | |
import torch | |
import torch.nn.functional as F | |
from mini_dust3r.heads.postprocess import reg_dense_depth, reg_dense_conf # noqa | |
from mini_dust3r.heads.dpt_head import PixelwiseTaskWithDPT # noqa | |
from mini_dust3r.croco.blocks import Mlp # noqa | |
def reg_desc(desc, mode): | |
if 'norm' in mode: | |
desc = desc / desc.norm(dim=-1, keepdim=True) | |
else: | |
raise ValueError(f"Unknown desc mode {mode}") | |
return desc | |
def postprocess(out, depth_mode, conf_mode, desc_dim=None, desc_mode='norm', two_confs=False, desc_conf_mode=None): | |
if desc_conf_mode is None: | |
desc_conf_mode = conf_mode | |
fmap = out.permute(0, 2, 3, 1) # B,H,W,D | |
res = dict(pts3d=reg_dense_depth(fmap[..., 0:3], mode=depth_mode)) | |
if conf_mode is not None: | |
res['conf'] = reg_dense_conf(fmap[..., 3], mode=conf_mode) | |
if desc_dim is not None: | |
start = 3 + int(conf_mode is not None) | |
res['desc'] = reg_desc(fmap[..., start:start + desc_dim], mode=desc_mode) | |
if two_confs: | |
res['desc_conf'] = reg_dense_conf(fmap[..., start + desc_dim], mode=desc_conf_mode) | |
else: | |
res['desc_conf'] = res['conf'].clone() | |
return res | |
class Cat_MLP_LocalFeatures_DPT_Pts3d(PixelwiseTaskWithDPT): | |
""" Mixture between MLP and DPT head that outputs 3d points and local features (with MLP). | |
The input for both heads is a concatenation of Encoder and Decoder outputs | |
""" | |
def __init__(self, net, has_conf=False, local_feat_dim=16, hidden_dim_factor=4., hooks_idx=None, dim_tokens=None, | |
num_channels=1, postprocess=None, feature_dim=256, last_dim=32, depth_mode=None, conf_mode=None, head_type="regression", **kwargs): | |
super().__init__(num_channels=num_channels, feature_dim=feature_dim, last_dim=last_dim, hooks_idx=hooks_idx, | |
dim_tokens=dim_tokens, depth_mode=depth_mode, postprocess=postprocess, conf_mode=conf_mode, head_type=head_type) | |
self.local_feat_dim = local_feat_dim | |
patch_size = net.patch_embed.patch_size | |
if isinstance(patch_size, tuple): | |
assert len(patch_size) == 2 and isinstance(patch_size[0], int) and isinstance( | |
patch_size[1], int), "What is your patchsize format? Expected a single int or a tuple of two ints." | |
assert patch_size[0] == patch_size[1], "Error, non square patches not managed" | |
patch_size = patch_size[0] | |
self.patch_size = patch_size | |
self.desc_mode = net.desc_mode | |
self.has_conf = has_conf | |
self.two_confs = net.two_confs # independent confs for 3D regr and descs | |
self.desc_conf_mode = net.desc_conf_mode | |
idim = net.enc_embed_dim + net.dec_embed_dim | |
self.head_local_features = Mlp(in_features=idim, | |
hidden_features=int(hidden_dim_factor * idim), | |
out_features=(self.local_feat_dim + self.two_confs) * self.patch_size**2) | |
def forward(self, decout, img_shape): | |
# pass through the heads | |
pts3d = self.dpt(decout, image_size=(img_shape[0], img_shape[1])) | |
# recover encoder and decoder outputs | |
enc_output, dec_output = decout[0], decout[-1] | |
cat_output = torch.cat([enc_output, dec_output], dim=-1) # concatenate | |
H, W = img_shape | |
B, S, D = cat_output.shape | |
# extract local_features | |
local_features = self.head_local_features(cat_output) # B,S,D | |
local_features = local_features.transpose(-1, -2).view(B, -1, H // self.patch_size, W // self.patch_size) | |
local_features = F.pixel_shuffle(local_features, self.patch_size) # B,d,H,W | |
# post process 3D pts, descriptors and confidences | |
out = torch.cat([pts3d, local_features], dim=1) | |
if self.postprocess: | |
out = self.postprocess(out, | |
depth_mode=self.depth_mode, | |
conf_mode=self.conf_mode, | |
desc_dim=self.local_feat_dim, | |
desc_mode=self.desc_mode, | |
two_confs=self.two_confs, | |
desc_conf_mode=self.desc_conf_mode) | |
return out | |