Spaces:
Paused
Paused
Commit
·
6970ab5
1
Parent(s):
8dd4ecb
Upload app.py
Browse filesreplace to use LLM and new data sources
app.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""wiki_chat_3_hack.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1chXsWeq1LzbvYIs6H73gibYmNDRbIgkD
|
8 |
+
"""
|
9 |
+
|
10 |
+
#!pip install gradio
|
11 |
+
|
12 |
+
#!pip install -U sentence-transformers
|
13 |
+
|
14 |
+
#!pip install datasets
|
15 |
+
|
16 |
+
#!pip install langchain
|
17 |
+
|
18 |
+
#!pip install openai
|
19 |
+
|
20 |
+
#!pip install faiss-cpu
|
21 |
+
|
22 |
+
#import numpy as np
|
23 |
+
import gradio as gr
|
24 |
+
#import random
|
25 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
26 |
+
from torch import tensor as torch_tensor
|
27 |
+
from datasets import load_dataset
|
28 |
+
|
29 |
+
"""# import models"""
|
30 |
+
|
31 |
+
bi_encoder = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1')
|
32 |
+
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
|
33 |
+
|
34 |
+
#The bi-encoder will retrieve top_k documents. We use a cross-encoder, to re-rank the results list to improve the quality
|
35 |
+
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
36 |
+
|
37 |
+
"""# import datasets"""
|
38 |
+
|
39 |
+
dataset = load_dataset("gfhayworth/hack_policy", split='train')
|
40 |
+
mypassages = list(dataset.to_pandas()['psg'])
|
41 |
+
|
42 |
+
dataset_embed = load_dataset("gfhayworth/hack_policy_embed", split='train')
|
43 |
+
dataset_embed_pd = dataset_embed.to_pandas()
|
44 |
+
mycorpus_embeddings = torch_tensor(dataset_embed_pd.values)
|
45 |
+
|
46 |
+
def search(query, passages = mypassages, doc_embedding = mycorpus_embeddings, top_k=20, top_n = 1):
|
47 |
+
question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
|
48 |
+
question_embedding = question_embedding #.cuda()
|
49 |
+
hits = util.semantic_search(question_embedding, doc_embedding, top_k=top_k)
|
50 |
+
hits = hits[0] # Get the hits for the first query
|
51 |
+
|
52 |
+
##### Re-Ranking #####
|
53 |
+
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
|
54 |
+
cross_scores = cross_encoder.predict(cross_inp)
|
55 |
+
|
56 |
+
# Sort results by the cross-encoder scores
|
57 |
+
for idx in range(len(cross_scores)):
|
58 |
+
hits[idx]['cross-score'] = cross_scores[idx]
|
59 |
+
|
60 |
+
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
|
61 |
+
predictions = hits[:top_n]
|
62 |
+
return predictions
|
63 |
+
# for hit in hits[0:3]:
|
64 |
+
# print("\t{:.3f}\t{}".format(hit['cross-score'], mypassages[hit['corpus_id']].replace("\n", " ")))
|
65 |
+
|
66 |
+
def get_text(qry):
|
67 |
+
predictions = search(qry)
|
68 |
+
prediction_text = []
|
69 |
+
for hit in predictions:
|
70 |
+
prediction_text.append("{}".format(mypassages[hit['corpus_id']]))
|
71 |
+
return prediction_text
|
72 |
+
|
73 |
+
# def prt_rslt(qry):
|
74 |
+
# rslt = get_text(qry)
|
75 |
+
# for r in rslt:
|
76 |
+
# print(r)
|
77 |
+
|
78 |
+
# prt_rslt("What is the name of the plan described by this summary of benefits?")
|
79 |
+
|
80 |
+
"""# new LLM based functions"""
|
81 |
+
|
82 |
+
import os
|
83 |
+
os.environ["OPENAI_API_KEY"] = "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"
|
84 |
+
|
85 |
+
from langchain.llms import OpenAI
|
86 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
87 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
88 |
+
|
89 |
+
from langchain.text_splitter import CharacterTextSplitter
|
90 |
+
#from langchain.vectorstores.faiss import FAISS
|
91 |
+
from langchain.docstore.document import Document
|
92 |
+
from langchain.prompts import PromptTemplate
|
93 |
+
from langchain.chains.question_answering import load_qa_chain
|
94 |
+
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
|
95 |
+
from langchain.chains import VectorDBQAWithSourcesChain
|
96 |
+
|
97 |
+
chain_qa = load_qa_with_sources_chain(OpenAI(temperature=0), chain_type="stuff")
|
98 |
+
|
99 |
+
def get_text_fmt(qry, passages = mypassages, doc_embedding=mycorpus_embeddings):
|
100 |
+
predictions = search(qry, passages = passages, doc_embedding = doc_embedding, top_n=5, )
|
101 |
+
prediction_text = []
|
102 |
+
for hit in predictions:
|
103 |
+
page_content = passages[hit['corpus_id']]
|
104 |
+
metadata = {"source": hit['corpus_id']}
|
105 |
+
result = Document(page_content=page_content, metadata=metadata)
|
106 |
+
prediction_text.append(result)
|
107 |
+
return prediction_text
|
108 |
+
|
109 |
+
#mypassages[0]
|
110 |
+
|
111 |
+
#mycorpus_embeddings[0][:5]
|
112 |
+
|
113 |
+
# query = "What is the name of the plan described by this summary of benefits?"
|
114 |
+
# mydocs = get_text_fmt(query)
|
115 |
+
# print(len(mydocs))
|
116 |
+
# for d in mydocs:
|
117 |
+
# print(d)
|
118 |
+
|
119 |
+
# chain_qa.run(input_documents=mydocs, question=query)
|
120 |
+
|
121 |
+
def get_llm_response(message):
|
122 |
+
mydocs = get_text_fmt(message)
|
123 |
+
responses = chain_qa.run(input_documents=mydocs, question=message)
|
124 |
+
return responses
|
125 |
+
|
126 |
+
"""# chat example"""
|
127 |
+
|
128 |
+
def chat(message, history):
|
129 |
+
history = history or []
|
130 |
+
message = message.lower()
|
131 |
+
|
132 |
+
response = get_llm_response(message)
|
133 |
+
history.append((message, response))
|
134 |
+
return history, history
|
135 |
+
|
136 |
+
css=".gradio-container {background-color: lightgray}"
|
137 |
+
|
138 |
+
with gr.Blocks(css=css) as demo:
|
139 |
+
history_state = gr.State()
|
140 |
+
gr.Markdown('# Hack QA')
|
141 |
+
title='Benefit Chatbot'
|
142 |
+
description='chatbot with search on Health Benefits'
|
143 |
+
with gr.Row():
|
144 |
+
chatbot = gr.Chatbot()
|
145 |
+
with gr.Row():
|
146 |
+
message = gr.Textbox(label='Input your question here:',
|
147 |
+
placeholder='What is the name of the plan described by this summary of benefits?',
|
148 |
+
lines=1)
|
149 |
+
submit = gr.Button(value='Send',
|
150 |
+
variant='secondary').style(full_width=False)
|
151 |
+
submit.click(chat,
|
152 |
+
inputs=[message, history_state],
|
153 |
+
outputs=[chatbot, history_state])
|
154 |
+
gr.Examples(
|
155 |
+
examples=["What is the name of the plan described by this summary of benefits?",
|
156 |
+
"How much is the monthly premium?",
|
157 |
+
"How much do I have to pay if I am admitted to the hospital?"],
|
158 |
+
inputs=message
|
159 |
+
)
|
160 |
+
|
161 |
+
demo.launch()
|
162 |
+
|