Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,12 +10,19 @@ import time
|
|
10 |
import tempfile
|
11 |
import streamlit.components.v1 as components
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
|
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
class TransformerEncoder(tf.keras.layers.Layer):
|
21 |
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.01, **kwargs):
|
@@ -49,7 +56,14 @@ class TransformerEncoder(tf.keras.layers.Layer):
|
|
49 |
})
|
50 |
return config
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
def extract_features(path):
|
55 |
sample_rate = 16000
|
@@ -59,6 +73,9 @@ def extract_features(path):
|
|
59 |
if array.shape[0] > 1:
|
60 |
array = np.mean(array, axis=0, keepdims=True)
|
61 |
|
|
|
|
|
|
|
62 |
embeddings = m(array)['embedding']
|
63 |
embeddings.shape.assert_is_compatible_with([None, 1024])
|
64 |
embeddings = np.squeeze(np.array(embeddings), axis=0)
|
@@ -69,20 +86,44 @@ st.markdown('<span style="color:black; font-size: 48px; font-weight: bold;">Neu<
|
|
69 |
|
70 |
option = st.radio("**Choose an option:**", ["Upload an audio file", "Record audio"])
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
prediction = model.predict(np.expand_dims(features, axis=0))
|
87 |
autism_probability = prediction[0][1]
|
88 |
normal_probability = prediction[0][0]
|
@@ -116,67 +157,181 @@ if option == "Upload an audio file":
|
|
116 |
unsafe_allow_html=True
|
117 |
)
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
elapsed_time = round(time.time() - start_time, 2)
|
120 |
st.write(f"Elapsed Time: {elapsed_time} seconds")
|
121 |
|
122 |
else: # Option is "Record audio"
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
# Process the converted audio file
|
137 |
-
features = extract_features(converted_audio_path)
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
-
|
|
|
|
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
'</div>',
|
151 |
-
unsafe_allow_html=True
|
152 |
-
)
|
153 |
-
st.markdown(
|
154 |
-
f'<div style="background-color:#ADD8E6;padding:20px;border-radius:10px;margin-bottom:40px;">'
|
155 |
-
f'<h3 style="color:black;">Normal: {normal_probability}</h3>'
|
156 |
-
'</div>',
|
157 |
-
unsafe_allow_html=True
|
158 |
-
)
|
159 |
-
else:
|
160 |
-
st.markdown(
|
161 |
-
f'<div style="background-color:#658EA9;padding:20px;border-radius:10px;margin-bottom:40px;">'
|
162 |
-
f'<h3 style="color:black;">Normal: {normal_probability}</h3>'
|
163 |
-
'</div>',
|
164 |
-
unsafe_allow_html=True
|
165 |
-
)
|
166 |
-
st.markdown(
|
167 |
-
f'<div style="background-color:#ADD8E6;padding:20px;border-radius:10px;margin-bottom:40px;">'
|
168 |
-
f'<h3 style="color:black;">Autism: {autism_probability}</h3>'
|
169 |
-
'</div>',
|
170 |
-
unsafe_allow_html=True
|
171 |
-
)
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
try:
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
except Exception as e:
|
182 |
-
|
|
|
10 |
import tempfile
|
11 |
import streamlit.components.v1 as components
|
12 |
|
13 |
+
# Attempt to set GPU memory growth
|
14 |
+
try:
|
15 |
+
from tensorflow.compat.v1 import ConfigProto
|
16 |
+
from tensorflow.compat.v1 import InteractiveSession
|
17 |
|
18 |
+
config = ConfigProto()
|
19 |
+
config.gpu_options.allow_growth = True
|
20 |
+
session = InteractiveSession(config=config)
|
21 |
+
except Exception as e:
|
22 |
+
st.warning(f"Could not set GPU memory growth: {e}")
|
23 |
+
|
24 |
+
model_path = 'TrillsonFeature_model'
|
25 |
+
m = hub.load(model_path)
|
26 |
|
27 |
class TransformerEncoder(tf.keras.layers.Layer):
|
28 |
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.01, **kwargs):
|
|
|
56 |
})
|
57 |
return config
|
58 |
|
59 |
+
def load_autism_model():
|
60 |
+
try:
|
61 |
+
return load_model('autism_detection_model3.h5', custom_objects={'TransformerEncoder': TransformerEncoder})
|
62 |
+
except Exception as e:
|
63 |
+
st.error(f"Error loading model: {e}")
|
64 |
+
return None
|
65 |
+
|
66 |
+
model = load_autism_model()
|
67 |
|
68 |
def extract_features(path):
|
69 |
sample_rate = 16000
|
|
|
73 |
if array.shape[0] > 1:
|
74 |
array = np.mean(array, axis=0, keepdims=True)
|
75 |
|
76 |
+
# Truncate the audio to 10 seconds for reducing memory usage
|
77 |
+
array = array[:, :sample_rate * 10]
|
78 |
+
|
79 |
embeddings = m(array)['embedding']
|
80 |
embeddings.shape.assert_is_compatible_with([None, 1024])
|
81 |
embeddings = np.squeeze(np.array(embeddings), axis=0)
|
|
|
86 |
|
87 |
option = st.radio("**Choose an option:**", ["Upload an audio file", "Record audio"])
|
88 |
|
89 |
+
def run_prediction(features):
|
90 |
+
try:
|
91 |
+
prediction = model.predict(np.expand_dims(features, axis=0))
|
92 |
+
autism_probability = prediction[0][1]
|
93 |
+
normal_probability = prediction[0][0]
|
94 |
+
|
95 |
+
st.subheader("Prediction Probabilities:")
|
96 |
+
|
97 |
+
if autism_probability > normal_probability:
|
98 |
+
st.markdown(
|
99 |
+
f'<div style="background-color:#658EA9;padding:20px;border-radius:10px;margin-bottom:40px;">'
|
100 |
+
f'<h3 style="color:black;">Autism: {autism_probability}</h3>'
|
101 |
+
'</div>',
|
102 |
+
unsafe_allow_html=True
|
103 |
+
)
|
104 |
+
st.markdown(
|
105 |
+
f'<div style="background-color:#ADD8E6;padding:20px;border-radius:10px;margin-bottom:40px;">'
|
106 |
+
f'<h3 style="color:black;">Normal: {normal_probability}</h3>'
|
107 |
+
'</div>',
|
108 |
+
unsafe_allow_html=True
|
109 |
+
)
|
110 |
+
else:
|
111 |
+
st.markdown(
|
112 |
+
f'<div style="background-color:#658EA9;padding:20px;border-radius:10px;margin-bottom:40px;">'
|
113 |
+
f'<h3 style="color:black;">Normal: {normal_probability}</h3>'
|
114 |
+
'</div>',
|
115 |
+
unsafe_allow_html=True
|
116 |
+
)
|
117 |
+
st.markdown(
|
118 |
+
f'<div style="background-color:#ADD8E6;padding:20px;border-radius:10px;margin-bottom:40px;">'
|
119 |
+
f'<h3 style="color:black;">Autism: {autism_probability}</h3>'
|
120 |
+
'</div>',
|
121 |
+
unsafe_allow_html=True
|
122 |
+
)
|
123 |
+
|
124 |
+
except tf.errors.ResourceExhaustedError as e:
|
125 |
+
st.error("Resource exhausted error: switching to CPU.")
|
126 |
+
with tf.device('/cpu:0'):
|
127 |
prediction = model.predict(np.expand_dims(features, axis=0))
|
128 |
autism_probability = prediction[0][1]
|
129 |
normal_probability = prediction[0][0]
|
|
|
157 |
unsafe_allow_html=True
|
158 |
)
|
159 |
|
160 |
+
if option == "Upload an audio file":
|
161 |
+
uploaded_file = st.file_uploader("Upload an audio file (.wav)", type=["wav"])
|
162 |
+
if uploaded_file is not None:
|
163 |
+
start_time = time.time() # Record start time
|
164 |
+
with st.spinner('Extracting features...'):
|
165 |
+
# Process the uploaded file
|
166 |
+
with open("temp_audio.wav", "wb") as f:
|
167 |
+
f.write(uploaded_file.getbuffer())
|
168 |
+
features = extract_features("temp_audio.wav")
|
169 |
+
os.remove("temp_audio.wav")
|
170 |
+
run_prediction(features)
|
171 |
elapsed_time = round(time.time() - start_time, 2)
|
172 |
st.write(f"Elapsed Time: {elapsed_time} seconds")
|
173 |
|
174 |
else: # Option is "Record audio"
|
175 |
+
audio_recorder_html = '''
|
176 |
+
<!DOCTYPE html>
|
177 |
+
<html lang="en">
|
178 |
+
<head>
|
179 |
+
<meta charset="UTF-8">
|
180 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
181 |
+
<title>Audio Recorder</title>
|
182 |
+
<style>
|
183 |
+
body {
|
184 |
+
font-family: Arial, sans-serif;
|
185 |
+
background-color: #ffffff;
|
186 |
+
margin: 0;
|
187 |
+
padding: 0;
|
188 |
+
display: flex;
|
189 |
+
justify-content: center;
|
190 |
+
align-items: center;
|
191 |
+
height: 100vh;
|
192 |
+
}
|
193 |
|
194 |
+
.container {
|
195 |
+
text-align: center;
|
196 |
+
background-color: #ffffff;
|
197 |
+
border-radius: 0%;
|
198 |
+
}
|
199 |
|
200 |
+
h1 {
|
201 |
+
color: #000000;
|
202 |
+
}
|
|
|
|
|
203 |
|
204 |
+
button {
|
205 |
+
background-color: #40826D;
|
206 |
+
color: rgb(0, 0, 0);
|
207 |
+
border: none;
|
208 |
+
padding: 10px 20px;
|
209 |
+
text-align: center;
|
210 |
+
text-decoration: none;
|
211 |
+
display: inline-block;
|
212 |
+
font-size: 16px;
|
213 |
+
margin: 10px;
|
214 |
+
cursor: pointer;
|
215 |
+
border-radius: 5px;
|
216 |
+
}
|
217 |
|
218 |
+
button:hover {
|
219 |
+
background-color: #40826D;
|
220 |
+
}
|
221 |
|
222 |
+
button:disabled {
|
223 |
+
background-color: #df5e5e;
|
224 |
+
cursor: not-allowed;
|
225 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
|
227 |
+
#timer {
|
228 |
+
font-size: 20px;
|
229 |
+
margin-top: 20px;
|
230 |
+
color: #000000;
|
231 |
+
}
|
232 |
+
</style>
|
233 |
+
</head>
|
234 |
+
<body>
|
235 |
+
<div class="container">
|
236 |
+
<h1>Audio Recorder</h1>
|
237 |
+
<button id="startRecording">Start Recording</button>
|
238 |
+
<button id="stopRecording" disabled>Stop Recording</button>
|
239 |
+
<div id="timer">00:00</div>
|
240 |
+
</div>
|
241 |
+
|
242 |
+
<script>
|
243 |
+
let recorder;
|
244 |
+
let audioChunks = [];
|
245 |
+
let startTime;
|
246 |
+
let timerInterval;
|
247 |
+
|
248 |
+
function updateTime() {
|
249 |
+
const elapsedTime = Math.floor((Date.now() - startTime) / 1000);
|
250 |
+
const minutes = Math.floor(elapsedTime / 60);
|
251 |
+
const seconds = elapsedTime % 60;
|
252 |
+
const formattedTime = `${minutes.toString().padStart(2, '0')}:${seconds.toString().padStart(2, '0')}`;
|
253 |
+
document.getElementById('timer').textContent = formattedTime;
|
254 |
+
}
|
255 |
|
256 |
+
navigator.mediaDevices.getUserMedia({ audio: true })
|
257 |
+
.then(stream => {
|
258 |
+
recorder = new MediaRecorder(stream);
|
259 |
+
|
260 |
+
recorder.ondataavailable = e => {
|
261 |
+
audioChunks.push(e.data);
|
262 |
+
};
|
263 |
+
|
264 |
+
recorder.onstart = () => {
|
265 |
+
startTime = Date.now();
|
266 |
+
timerInterval = setInterval(updateTime, 1000);
|
267 |
+
};
|
268 |
+
|
269 |
+
recorder.onstop = () => {
|
270 |
+
const audioBlob = new Blob(audioChunks, { type: 'audio/wav' });
|
271 |
+
const audioUrl = URL.createObjectURL(audioBlob);
|
272 |
+
const a = document.createElement('a');
|
273 |
+
a.href = audioUrl;
|
274 |
+
a.download = 'recorded_audio.wav';
|
275 |
+
document.body.appendChild(a);
|
276 |
+
a.click();
|
277 |
+
|
278 |
+
// Reset
|
279 |
+
audioChunks = [];
|
280 |
+
clearInterval(timerInterval);
|
281 |
+
};
|
282 |
+
})
|
283 |
+
.catch(err => {
|
284 |
+
console.error('Permission to access microphone denied:', err);
|
285 |
+
});
|
286 |
+
|
287 |
+
document.getElementById('startRecording').addEventListener('click', () => {
|
288 |
+
recorder.start();
|
289 |
+
document.getElementById('startRecording').disabled = true;
|
290 |
+
document.getElementById('stopRecording').disabled = false;
|
291 |
+
setTimeout(() => {
|
292 |
+
recorder.stop();
|
293 |
+
document.getElementById('startRecording').disabled = false;
|
294 |
+
document.getElementById('stopRecording').disabled = true;
|
295 |
+
}, 15000); // 15 seconds
|
296 |
+
});
|
297 |
+
|
298 |
+
document.getElementById('stopRecording').addEventListener('click', () => {
|
299 |
+
recorder.stop();
|
300 |
+
document.getElementById('startRecording').disabled = false;
|
301 |
+
document.getElementById('stopRecording').disabled = true;
|
302 |
+
});
|
303 |
+
</script>
|
304 |
+
</body>
|
305 |
+
</html>
|
306 |
+
'''
|
307 |
+
st.components.v1.html(audio_recorder_html, height=600)
|
308 |
+
|
309 |
+
if st.button("Click to Predict"):
|
310 |
try:
|
311 |
+
# Run the ffmpeg command to convert the recorded audio
|
312 |
+
command = 'ffmpeg -i C:/Users/giris/Downloads/recorded_audio.wav -acodec pcm_s16le -ar 16000 -ac 1 C:/Users/giris/Downloads/recorded_audio2.wav'
|
313 |
+
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
314 |
+
if result.returncode != 0:
|
315 |
+
st.error(f"Error running ffmpeg: {result.stderr}")
|
316 |
+
else:
|
317 |
+
# Check if the file exists
|
318 |
+
if not os.path.exists("C:/Users/giris/Downloads/recorded_audio2.wav"):
|
319 |
+
st.error("The converted audio file was not created.")
|
320 |
+
else:
|
321 |
+
# Process the converted audio file
|
322 |
+
features = extract_features("C:/Users/giris/Downloads/recorded_audio2.wav")
|
323 |
+
run_prediction(features)
|
324 |
+
|
325 |
+
# Try to delete the first audio file
|
326 |
+
try:
|
327 |
+
os.remove("recorded_audio.wav")
|
328 |
+
except Exception as e:
|
329 |
+
print(f"Error deleting 'recorded_audio.wav': {e}")
|
330 |
+
|
331 |
+
# Try to delete the second audio file
|
332 |
+
try:
|
333 |
+
os.remove("recorded_audio2.wav")
|
334 |
+
except Exception as e:
|
335 |
+
print(f"Error deleting 'recorded_audio2.wav': {e}")
|
336 |
except Exception as e:
|
337 |
+
st.error(f"An error occurred: {e}")
|