ghassenhannachi commited on
Commit
c3cb47d
1 Parent(s): 9f2e59c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -12,9 +12,9 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
@@ -22,7 +22,7 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
26
  return outputs["text"]
27
 
28
 
@@ -33,9 +33,11 @@ def synthesise(text):
33
 
34
 
35
  def speech_to_speech_translation(audio):
 
 
36
  translated_text = translate(audio)
37
  synthesised_speech = synthesise(translated_text)
38
- synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
  return 16000, synthesised_speech
40
 
41
 
 
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ processor = SpeechT5Processor.from_pretrained("kfahn/speecht5_finetuned_voxpopuli_es")
16
 
17
+ model = SpeechT5ForTextToSpeech.from_pretrained("kfahn/speecht5_finetuned_voxpopuli_es").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
 
22
 
23
 
24
  def translate(audio):
25
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "es"})
26
  return outputs["text"]
27
 
28
 
 
33
 
34
 
35
  def speech_to_speech_translation(audio):
36
+ target_dtype = np.int16
37
+ max_range = np.iinfo(target_dtype).max
38
  translated_text = translate(audio)
39
  synthesised_speech = synthesise(translated_text)
40
+ synthesised_speech = (synthesised_speech.numpy() * max_range).astype(target_dtype)
41
  return 16000, synthesised_speech
42
 
43