File size: 3,943 Bytes
2a13495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import torch
import torch.nn as nn
import torch.nn.functional as F


class Conv3x3GNReLU(nn.Module):
    def __init__(self, in_channels, out_channels, upsample=False):
        super().__init__()
        self.upsample = upsample
        self.block = nn.Sequential(
            nn.Conv2d(
                in_channels, out_channels, (3, 3), stride=1, padding=1, bias=False
            ),
            nn.GroupNorm(32, out_channels),
            nn.ReLU(inplace=True),
        )

    def forward(self, x):
        x = self.block(x)
        if self.upsample:
            x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
        return x


class FPNBlock(nn.Module):
    def __init__(self, pyramid_channels, skip_channels):
        super().__init__()
        self.skip_conv = nn.Conv2d(skip_channels, pyramid_channels, kernel_size=1)

    def forward(self, x, skip=None):
        x = F.interpolate(x, scale_factor=2, mode="nearest")
        skip = self.skip_conv(skip)
        x = x + skip
        return x


class SegmentationBlock(nn.Module):
    def __init__(self, in_channels, out_channels, n_upsamples=0):
        super().__init__()

        blocks = [Conv3x3GNReLU(in_channels, out_channels, upsample=bool(n_upsamples))]

        if n_upsamples > 1:
            for _ in range(1, n_upsamples):
                blocks.append(Conv3x3GNReLU(out_channels, out_channels, upsample=True))

        self.block = nn.Sequential(*blocks)

    def forward(self, x):
        return self.block(x)


class MergeBlock(nn.Module):
    def __init__(self, policy):
        super().__init__()
        if policy not in ["add", "cat"]:
            raise ValueError(
                "`merge_policy` must be one of: ['add', 'cat'], got {}".format(policy)
            )
        self.policy = policy

    def forward(self, x):
        if self.policy == "add":
            return sum(x)
        elif self.policy == "cat":
            return torch.cat(x, dim=1)
        else:
            raise ValueError(
                "`merge_policy` must be one of: ['add', 'cat'], got {}".format(
                    self.policy
                )
            )


class FPNDecoder(nn.Module):
    def __init__(
        self,
        encoder_channels,
        encoder_depth=5,
        pyramid_channels=256,
        segmentation_channels=128,
        dropout=0.2,
        merge_policy="add",
    ):
        super().__init__()

        self.out_channels = (
            segmentation_channels
            if merge_policy == "add"
            else segmentation_channels * 4
        )
        if encoder_depth < 3:
            raise ValueError(
                "Encoder depth for FPN decoder cannot be less than 3, got {}.".format(
                    encoder_depth
                )
            )

        encoder_channels = encoder_channels[::-1]
        encoder_channels = encoder_channels[: encoder_depth + 1]

        self.p5 = nn.Conv2d(encoder_channels[0], pyramid_channels, kernel_size=1)
        self.p4 = FPNBlock(pyramid_channels, encoder_channels[1])
        self.p3 = FPNBlock(pyramid_channels, encoder_channels[2])
        self.p2 = FPNBlock(pyramid_channels, encoder_channels[3])

        self.seg_blocks = nn.ModuleList(
            [
                SegmentationBlock(
                    pyramid_channels, segmentation_channels, n_upsamples=n_upsamples
                )
                for n_upsamples in [3, 2, 1, 0]
            ]
        )

        self.merge = MergeBlock(merge_policy)
        self.dropout = nn.Dropout2d(p=dropout, inplace=True)

    def forward(self, *features):
        c2, c3, c4, c5 = features[-4:]

        p5 = self.p5(c5)
        p4 = self.p4(p5, c4)
        p3 = self.p3(p4, c3)
        p2 = self.p2(p3, c2)

        feature_pyramid = [
            seg_block(p) for seg_block, p in zip(self.seg_blocks, [p5, p4, p3, p2])
        ]
        x = self.merge(feature_pyramid)
        x = self.dropout(x)

        return x