File size: 3,735 Bytes
2a13495 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import torch
import torch.nn as nn
try:
from inplace_abn import InPlaceABN
except ImportError:
InPlaceABN = None
class Conv2dReLU(nn.Sequential):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
padding=0,
stride=1,
use_batchnorm=True,
):
if use_batchnorm == "inplace" and InPlaceABN is None:
raise RuntimeError(
"In order to use `use_batchnorm='inplace'` inplace_abn package must be installed. "
+ "To install see: https://github.com/mapillary/inplace_abn"
)
conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
bias=not (use_batchnorm),
)
relu = nn.ReLU(inplace=True)
if use_batchnorm == "inplace":
bn = InPlaceABN(out_channels, activation="leaky_relu", activation_param=0.0)
relu = nn.Identity()
elif use_batchnorm and use_batchnorm != "inplace":
bn = nn.BatchNorm2d(out_channels)
else:
bn = nn.Identity()
super(Conv2dReLU, self).__init__(conv, bn, relu)
class SCSEModule(nn.Module):
def __init__(self, in_channels, reduction=16):
super().__init__()
self.cSE = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels, in_channels // reduction, 1),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels // reduction, in_channels, 1),
nn.Sigmoid(),
)
self.sSE = nn.Sequential(nn.Conv2d(in_channels, 1, 1), nn.Sigmoid())
def forward(self, x):
return x * self.cSE(x) + x * self.sSE(x)
class ArgMax(nn.Module):
def __init__(self, dim=None):
super().__init__()
self.dim = dim
def forward(self, x):
return torch.argmax(x, dim=self.dim)
class Clamp(nn.Module):
def __init__(self, min=0, max=1):
super().__init__()
self.min, self.max = min, max
def forward(self, x):
return torch.clamp(x, self.min, self.max)
class Activation(nn.Module):
def __init__(self, name, **params):
super().__init__()
if name is None or name == "identity":
self.activation = nn.Identity(**params)
elif name == "sigmoid":
self.activation = nn.Sigmoid()
elif name == "softmax2d":
self.activation = nn.Softmax(dim=1, **params)
elif name == "softmax":
self.activation = nn.Softmax(**params)
elif name == "logsoftmax":
self.activation = nn.LogSoftmax(**params)
elif name == "tanh":
self.activation = nn.Tanh()
elif name == "argmax":
self.activation = ArgMax(**params)
elif name == "argmax2d":
self.activation = ArgMax(dim=1, **params)
elif name == "clamp":
self.activation = Clamp(**params)
elif callable(name):
self.activation = name(**params)
else:
raise ValueError(
f"Activation should be callable/sigmoid/softmax/logsoftmax/tanh/"
f"argmax/argmax2d/clamp/None; got {name}"
)
def forward(self, x):
return self.activation(x)
class Attention(nn.Module):
def __init__(self, name, **params):
super().__init__()
if name is None:
self.attention = nn.Identity(**params)
elif name == "scse":
self.attention = SCSEModule(**params)
else:
raise ValueError("Attention {} is not implemented".format(name))
def forward(self, x):
return self.attention(x)
|