File size: 3,735 Bytes
2a13495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import torch.nn as nn

try:
    from inplace_abn import InPlaceABN
except ImportError:
    InPlaceABN = None


class Conv2dReLU(nn.Sequential):
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        padding=0,
        stride=1,
        use_batchnorm=True,
    ):

        if use_batchnorm == "inplace" and InPlaceABN is None:
            raise RuntimeError(
                "In order to use `use_batchnorm='inplace'` inplace_abn package must be installed. "
                + "To install see: https://github.com/mapillary/inplace_abn"
            )

        conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            bias=not (use_batchnorm),
        )
        relu = nn.ReLU(inplace=True)

        if use_batchnorm == "inplace":
            bn = InPlaceABN(out_channels, activation="leaky_relu", activation_param=0.0)
            relu = nn.Identity()

        elif use_batchnorm and use_batchnorm != "inplace":
            bn = nn.BatchNorm2d(out_channels)

        else:
            bn = nn.Identity()

        super(Conv2dReLU, self).__init__(conv, bn, relu)


class SCSEModule(nn.Module):
    def __init__(self, in_channels, reduction=16):
        super().__init__()
        self.cSE = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels, in_channels // reduction, 1),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_channels // reduction, in_channels, 1),
            nn.Sigmoid(),
        )
        self.sSE = nn.Sequential(nn.Conv2d(in_channels, 1, 1), nn.Sigmoid())

    def forward(self, x):
        return x * self.cSE(x) + x * self.sSE(x)


class ArgMax(nn.Module):
    def __init__(self, dim=None):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        return torch.argmax(x, dim=self.dim)


class Clamp(nn.Module):
    def __init__(self, min=0, max=1):
        super().__init__()
        self.min, self.max = min, max

    def forward(self, x):
        return torch.clamp(x, self.min, self.max)


class Activation(nn.Module):
    def __init__(self, name, **params):

        super().__init__()

        if name is None or name == "identity":
            self.activation = nn.Identity(**params)
        elif name == "sigmoid":
            self.activation = nn.Sigmoid()
        elif name == "softmax2d":
            self.activation = nn.Softmax(dim=1, **params)
        elif name == "softmax":
            self.activation = nn.Softmax(**params)
        elif name == "logsoftmax":
            self.activation = nn.LogSoftmax(**params)
        elif name == "tanh":
            self.activation = nn.Tanh()
        elif name == "argmax":
            self.activation = ArgMax(**params)
        elif name == "argmax2d":
            self.activation = ArgMax(dim=1, **params)
        elif name == "clamp":
            self.activation = Clamp(**params)
        elif callable(name):
            self.activation = name(**params)
        else:
            raise ValueError(
                f"Activation should be callable/sigmoid/softmax/logsoftmax/tanh/"
                f"argmax/argmax2d/clamp/None; got {name}"
            )

    def forward(self, x):
        return self.activation(x)


class Attention(nn.Module):
    def __init__(self, name, **params):
        super().__init__()

        if name is None:
            self.attention = nn.Identity(**params)
        elif name == "scse":
            self.attention = SCSEModule(**params)
        else:
            raise ValueError("Attention {} is not implemented".format(name))

    def forward(self, x):
        return self.attention(x)