File size: 2,349 Bytes
2a13495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch.nn as nn

from segmentation_models_pytorch.base import modules


class TransposeX2(nn.Sequential):
    def __init__(self, in_channels, out_channels, use_batchnorm=True):
        super().__init__()
        layers = [
            nn.ConvTranspose2d(
                in_channels, out_channels, kernel_size=4, stride=2, padding=1
            ),
            nn.ReLU(inplace=True),
        ]

        if use_batchnorm:
            layers.insert(1, nn.BatchNorm2d(out_channels))

        super().__init__(*layers)


class DecoderBlock(nn.Module):
    def __init__(self, in_channels, out_channels, use_batchnorm=True):
        super().__init__()

        self.block = nn.Sequential(
            modules.Conv2dReLU(
                in_channels,
                in_channels // 4,
                kernel_size=1,
                use_batchnorm=use_batchnorm,
            ),
            TransposeX2(
                in_channels // 4, in_channels // 4, use_batchnorm=use_batchnorm
            ),
            modules.Conv2dReLU(
                in_channels // 4,
                out_channels,
                kernel_size=1,
                use_batchnorm=use_batchnorm,
            ),
        )

    def forward(self, x, skip=None):
        x = self.block(x)
        if skip is not None:
            x = x + skip
        return x


class LinknetDecoder(nn.Module):
    def __init__(
        self, encoder_channels, prefinal_channels=32, n_blocks=5, use_batchnorm=True,
    ):
        super().__init__()

        # remove first skip
        encoder_channels = encoder_channels[1:]
        # reverse channels to start from head of encoder
        encoder_channels = encoder_channels[::-1]

        channels = list(encoder_channels) + [prefinal_channels]

        self.blocks = nn.ModuleList(
            [
                DecoderBlock(channels[i], channels[i + 1], use_batchnorm=use_batchnorm)
                for i in range(n_blocks)
            ]
        )

    def forward(self, *features):
        features = features[1:]  # remove first skip
        features = features[::-1]  # reverse channels to start from head of encoder

        x = features[0]
        skips = features[1:]

        for i, decoder_block in enumerate(self.blocks):
            skip = skips[i] if i < len(skips) else None
            x = decoder_block(x, skip)

        return x