File size: 1,927 Bytes
2a13495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import torch
import torch.nn as nn
from typing import List
from collections import OrderedDict

from . import _utils as utils


class EncoderMixin:
    """Add encoder functionality such as:
    - output channels specification of feature tensors (produced by encoder)
    - patching first convolution for arbitrary input channels
    """

    _output_stride = 32

    @property
    def out_channels(self):
        """Return channels dimensions for each tensor of forward output of encoder"""
        return self._out_channels[: self._depth + 1]

    @property
    def output_stride(self):
        return min(self._output_stride, 2 ** self._depth)

    def set_in_channels(self, in_channels, pretrained=True):
        """Change first convolution channels"""
        if in_channels == 3:
            return

        self._in_channels = in_channels
        if self._out_channels[0] == 3:
            self._out_channels = tuple([in_channels] + list(self._out_channels)[1:])

        utils.patch_first_conv(
            model=self, new_in_channels=in_channels, pretrained=pretrained
        )

    def get_stages(self):
        """Override it in your implementation"""
        raise NotImplementedError

    def make_dilated(self, output_stride):

        if output_stride == 16:
            stage_list = [
                5,
            ]
            dilation_list = [
                2,
            ]

        elif output_stride == 8:
            stage_list = [4, 5]
            dilation_list = [2, 4]

        else:
            raise ValueError(
                "Output stride should be 16 or 8, got {}.".format(output_stride)
            )

        self._output_stride = output_stride

        stages = self.get_stages()
        for stage_indx, dilation_rate in zip(stage_list, dilation_list):
            utils.replace_strides_with_dilation(
                module=stages[stage_indx], dilation_rate=dilation_rate,
            )