File size: 9,321 Bytes
2a13495 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import math
import numpy as np
from typing import Optional
import torch
import torch.nn.functional as F
__all__ = [
"focal_loss_with_logits",
"softmax_focal_loss_with_logits",
"soft_jaccard_score",
"soft_dice_score",
"wing_loss",
]
def to_tensor(x, dtype=None) -> torch.Tensor:
if isinstance(x, torch.Tensor):
if dtype is not None:
x = x.type(dtype)
return x
if isinstance(x, np.ndarray):
x = torch.from_numpy(x)
if dtype is not None:
x = x.type(dtype)
return x
if isinstance(x, (list, tuple)):
x = np.array(x)
x = torch.from_numpy(x)
if dtype is not None:
x = x.type(dtype)
return x
def focal_loss_with_logits(
output: torch.Tensor,
target: torch.Tensor,
gamma: float = 2.0,
alpha: Optional[float] = 0.25,
reduction: str = "mean",
normalized: bool = False,
reduced_threshold: Optional[float] = None,
eps: float = 1e-6,
) -> torch.Tensor:
"""Compute binary focal loss between target and output logits.
See :class:`~pytorch_toolbelt.losses.FocalLoss` for details.
Args:
output: Tensor of arbitrary shape (predictions of the model)
target: Tensor of the same shape as input
gamma: Focal loss power factor
alpha: Weight factor to balance positive and negative samples. Alpha must be in [0...1] range,
high values will give more weight to positive class.
reduction (string, optional): Specifies the reduction to apply to the output:
'none' | 'mean' | 'sum' | 'batchwise_mean'. 'none': no reduction will be applied,
'mean': the sum of the output will be divided by the number of
elements in the output, 'sum': the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`.
'batchwise_mean' computes mean loss per sample in batch. Default: 'mean'
normalized (bool): Compute normalized focal loss (https://arxiv.org/pdf/1909.07829.pdf).
reduced_threshold (float, optional): Compute reduced focal loss (https://arxiv.org/abs/1903.01347).
References:
https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/loss/losses.py
"""
target = target.type(output.type())
logpt = F.binary_cross_entropy_with_logits(output, target, reduction="none")
pt = torch.exp(-logpt)
# compute the loss
if reduced_threshold is None:
focal_term = (1.0 - pt).pow(gamma)
else:
focal_term = ((1.0 - pt) / reduced_threshold).pow(gamma)
focal_term[pt < reduced_threshold] = 1
loss = focal_term * logpt
if alpha is not None:
loss *= alpha * target + (1 - alpha) * (1 - target)
if normalized:
norm_factor = focal_term.sum().clamp_min(eps)
loss /= norm_factor
if reduction == "mean":
loss = loss.mean()
if reduction == "sum":
loss = loss.sum()
if reduction == "batchwise_mean":
loss = loss.sum(0)
return loss
def softmax_focal_loss_with_logits(
output: torch.Tensor,
target: torch.Tensor,
gamma: float = 2.0,
reduction="mean",
normalized=False,
reduced_threshold: Optional[float] = None,
eps: float = 1e-6,
) -> torch.Tensor:
"""Softmax version of focal loss between target and output logits.
See :class:`~pytorch_toolbelt.losses.FocalLoss` for details.
Args:
output: Tensor of shape [B, C, *] (Similar to nn.CrossEntropyLoss)
target: Tensor of shape [B, *] (Similar to nn.CrossEntropyLoss)
reduction (string, optional): Specifies the reduction to apply to the output:
'none' | 'mean' | 'sum' | 'batchwise_mean'. 'none': no reduction will be applied,
'mean': the sum of the output will be divided by the number of
elements in the output, 'sum': the output will be summed. Note: :attr:`size_average`
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
specifying either of those two args will override :attr:`reduction`.
'batchwise_mean' computes mean loss per sample in batch. Default: 'mean'
normalized (bool): Compute normalized focal loss (https://arxiv.org/pdf/1909.07829.pdf).
reduced_threshold (float, optional): Compute reduced focal loss (https://arxiv.org/abs/1903.01347).
"""
log_softmax = F.log_softmax(output, dim=1)
loss = F.nll_loss(log_softmax, target, reduction="none")
pt = torch.exp(-loss)
# compute the loss
if reduced_threshold is None:
focal_term = (1.0 - pt).pow(gamma)
else:
focal_term = ((1.0 - pt) / reduced_threshold).pow(gamma)
focal_term[pt < reduced_threshold] = 1
loss = focal_term * loss
if normalized:
norm_factor = focal_term.sum().clamp_min(eps)
loss = loss / norm_factor
if reduction == "mean":
loss = loss.mean()
if reduction == "sum":
loss = loss.sum()
if reduction == "batchwise_mean":
loss = loss.sum(0)
return loss
def soft_jaccard_score(
output: torch.Tensor,
target: torch.Tensor,
smooth: float = 0.0,
eps: float = 1e-7,
dims=None,
) -> torch.Tensor:
assert output.size() == target.size()
if dims is not None:
intersection = torch.sum(output * target, dim=dims)
cardinality = torch.sum(output + target, dim=dims)
else:
intersection = torch.sum(output * target)
cardinality = torch.sum(output + target)
union = cardinality - intersection
jaccard_score = (intersection + smooth) / (union + smooth).clamp_min(eps)
return jaccard_score
def soft_dice_score(
output: torch.Tensor,
target: torch.Tensor,
smooth: float = 0.0,
eps: float = 1e-7,
dims=None,
) -> torch.Tensor:
assert output.size() == target.size()
if dims is not None:
intersection = torch.sum(output * target, dim=dims)
cardinality = torch.sum(output + target, dim=dims)
else:
intersection = torch.sum(output * target)
cardinality = torch.sum(output + target)
dice_score = (2.0 * intersection + smooth) / (cardinality + smooth).clamp_min(eps)
return dice_score
def soft_tversky_score(
output: torch.Tensor,
target: torch.Tensor,
alpha: float,
beta: float,
smooth: float = 0.0,
eps: float = 1e-7,
dims=None,
) -> torch.Tensor:
assert output.size() == target.size()
if dims is not None:
intersection = torch.sum(output * target, dim=dims) # TP
fp = torch.sum(output * (1.0 - target), dim=dims)
fn = torch.sum((1 - output) * target, dim=dims)
else:
intersection = torch.sum(output * target) # TP
fp = torch.sum(output * (1.0 - target))
fn = torch.sum((1 - output) * target)
tversky_score = (intersection + smooth) / (
intersection + alpha * fp + beta * fn + smooth
).clamp_min(eps)
return tversky_score
def wing_loss(
output: torch.Tensor, target: torch.Tensor, width=5, curvature=0.5, reduction="mean"
):
"""Wing loss
References:
https://arxiv.org/pdf/1711.06753.pdf
"""
diff_abs = (target - output).abs()
loss = diff_abs.clone()
idx_smaller = diff_abs < width
idx_bigger = diff_abs >= width
loss[idx_smaller] = width * torch.log(1 + diff_abs[idx_smaller] / curvature)
C = width - width * math.log(1 + width / curvature)
loss[idx_bigger] = loss[idx_bigger] - C
if reduction == "sum":
loss = loss.sum()
if reduction == "mean":
loss = loss.mean()
return loss
def label_smoothed_nll_loss(
lprobs: torch.Tensor,
target: torch.Tensor,
epsilon: float,
ignore_index=None,
reduction="mean",
dim=-1,
) -> torch.Tensor:
"""NLL loss with label smoothing
References:
https://github.com/pytorch/fairseq/blob/master/fairseq/criterions/label_smoothed_cross_entropy.py
Args:
lprobs (torch.Tensor): Log-probabilities of predictions (e.g after log_softmax)
"""
if target.dim() == lprobs.dim() - 1:
target = target.unsqueeze(dim)
if ignore_index is not None:
pad_mask = target.eq(ignore_index)
target = target.masked_fill(pad_mask, 0)
nll_loss = -lprobs.gather(dim=dim, index=target)
smooth_loss = -lprobs.sum(dim=dim, keepdim=True)
# nll_loss.masked_fill_(pad_mask, 0.0)
# smooth_loss.masked_fill_(pad_mask, 0.0)
nll_loss = nll_loss.masked_fill(pad_mask, 0.0)
smooth_loss = smooth_loss.masked_fill(pad_mask, 0.0)
else:
nll_loss = -lprobs.gather(dim=dim, index=target)
smooth_loss = -lprobs.sum(dim=dim, keepdim=True)
nll_loss = nll_loss.squeeze(dim)
smooth_loss = smooth_loss.squeeze(dim)
if reduction == "sum":
nll_loss = nll_loss.sum()
smooth_loss = smooth_loss.sum()
if reduction == "mean":
nll_loss = nll_loss.mean()
smooth_loss = smooth_loss.mean()
eps_i = epsilon / lprobs.size(dim)
loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
return loss
|