File size: 3,060 Bytes
2a13495 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
from . import base
from . import functional as F
from ..base.modules import Activation
class IoU(base.Metric):
__name__ = "iou_score"
def __init__(
self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs
):
super().__init__(**kwargs)
self.eps = eps
self.threshold = threshold
self.activation = Activation(activation)
self.ignore_channels = ignore_channels
def forward(self, y_pr, y_gt):
y_pr = self.activation(y_pr)
return F.iou(
y_pr,
y_gt,
eps=self.eps,
threshold=self.threshold,
ignore_channels=self.ignore_channels,
)
class Fscore(base.Metric):
def __init__(
self,
beta=1,
eps=1e-7,
threshold=0.5,
activation=None,
ignore_channels=None,
**kwargs
):
super().__init__(**kwargs)
self.eps = eps
self.beta = beta
self.threshold = threshold
self.activation = Activation(activation)
self.ignore_channels = ignore_channels
def forward(self, y_pr, y_gt):
y_pr = self.activation(y_pr)
return F.f_score(
y_pr,
y_gt,
eps=self.eps,
beta=self.beta,
threshold=self.threshold,
ignore_channels=self.ignore_channels,
)
class Accuracy(base.Metric):
def __init__(self, threshold=0.5, activation=None, ignore_channels=None, **kwargs):
super().__init__(**kwargs)
self.threshold = threshold
self.activation = Activation(activation)
self.ignore_channels = ignore_channels
def forward(self, y_pr, y_gt):
y_pr = self.activation(y_pr)
return F.accuracy(
y_pr, y_gt, threshold=self.threshold, ignore_channels=self.ignore_channels,
)
class Recall(base.Metric):
def __init__(
self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs
):
super().__init__(**kwargs)
self.eps = eps
self.threshold = threshold
self.activation = Activation(activation)
self.ignore_channels = ignore_channels
def forward(self, y_pr, y_gt):
y_pr = self.activation(y_pr)
return F.recall(
y_pr,
y_gt,
eps=self.eps,
threshold=self.threshold,
ignore_channels=self.ignore_channels,
)
class Precision(base.Metric):
def __init__(
self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs
):
super().__init__(**kwargs)
self.eps = eps
self.threshold = threshold
self.activation = Activation(activation)
self.ignore_channels = ignore_channels
def forward(self, y_pr, y_gt):
y_pr = self.activation(y_pr)
return F.precision(
y_pr,
y_gt,
eps=self.eps,
threshold=self.threshold,
ignore_channels=self.ignore_channels,
)
|