File size: 3,060 Bytes
2a13495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from . import base
from . import functional as F
from ..base.modules import Activation


class IoU(base.Metric):
    __name__ = "iou_score"

    def __init__(
        self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs
    ):
        super().__init__(**kwargs)
        self.eps = eps
        self.threshold = threshold
        self.activation = Activation(activation)
        self.ignore_channels = ignore_channels

    def forward(self, y_pr, y_gt):
        y_pr = self.activation(y_pr)
        return F.iou(
            y_pr,
            y_gt,
            eps=self.eps,
            threshold=self.threshold,
            ignore_channels=self.ignore_channels,
        )


class Fscore(base.Metric):
    def __init__(
        self,
        beta=1,
        eps=1e-7,
        threshold=0.5,
        activation=None,
        ignore_channels=None,
        **kwargs
    ):
        super().__init__(**kwargs)
        self.eps = eps
        self.beta = beta
        self.threshold = threshold
        self.activation = Activation(activation)
        self.ignore_channels = ignore_channels

    def forward(self, y_pr, y_gt):
        y_pr = self.activation(y_pr)
        return F.f_score(
            y_pr,
            y_gt,
            eps=self.eps,
            beta=self.beta,
            threshold=self.threshold,
            ignore_channels=self.ignore_channels,
        )


class Accuracy(base.Metric):
    def __init__(self, threshold=0.5, activation=None, ignore_channels=None, **kwargs):
        super().__init__(**kwargs)
        self.threshold = threshold
        self.activation = Activation(activation)
        self.ignore_channels = ignore_channels

    def forward(self, y_pr, y_gt):
        y_pr = self.activation(y_pr)
        return F.accuracy(
            y_pr, y_gt, threshold=self.threshold, ignore_channels=self.ignore_channels,
        )


class Recall(base.Metric):
    def __init__(
        self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs
    ):
        super().__init__(**kwargs)
        self.eps = eps
        self.threshold = threshold
        self.activation = Activation(activation)
        self.ignore_channels = ignore_channels

    def forward(self, y_pr, y_gt):
        y_pr = self.activation(y_pr)
        return F.recall(
            y_pr,
            y_gt,
            eps=self.eps,
            threshold=self.threshold,
            ignore_channels=self.ignore_channels,
        )


class Precision(base.Metric):
    def __init__(
        self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs
    ):
        super().__init__(**kwargs)
        self.eps = eps
        self.threshold = threshold
        self.activation = Activation(activation)
        self.ignore_channels = ignore_channels

    def forward(self, y_pr, y_gt):
        y_pr = self.activation(y_pr)
        return F.precision(
            y_pr,
            y_gt,
            eps=self.eps,
            threshold=self.threshold,
            ignore_channels=self.ignore_channels,
        )