ghlee94's picture
Init
2a13495
import torch
import torch.nn as nn
import torch.nn.functional as F
from segmentation_models_pytorch.base import modules as md
class PAB(nn.Module):
def __init__(self, in_channels, out_channels, pab_channels=64):
super(PAB, self).__init__()
# Series of 1x1 conv to generate attention feature maps
self.pab_channels = pab_channels
self.in_channels = in_channels
self.top_conv = nn.Conv2d(in_channels, pab_channels, kernel_size=1)
self.center_conv = nn.Conv2d(in_channels, pab_channels, kernel_size=1)
self.bottom_conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1)
self.map_softmax = nn.Softmax(dim=1)
self.out_conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1)
def forward(self, x):
bsize = x.size()[0]
h = x.size()[2]
w = x.size()[3]
x_top = self.top_conv(x)
x_center = self.center_conv(x)
x_bottom = self.bottom_conv(x)
x_top = x_top.flatten(2)
x_center = x_center.flatten(2).transpose(1, 2)
x_bottom = x_bottom.flatten(2).transpose(1, 2)
sp_map = torch.matmul(x_center, x_top)
sp_map = self.map_softmax(sp_map.view(bsize, -1)).view(bsize, h * w, h * w)
sp_map = torch.matmul(sp_map, x_bottom)
sp_map = sp_map.reshape(bsize, self.in_channels, h, w)
x = x + sp_map
x = self.out_conv(x)
return x
class MFAB(nn.Module):
def __init__(
self, in_channels, skip_channels, out_channels, use_batchnorm=True, reduction=16
):
# MFAB is just a modified version of SE-blocks, one for skip, one for input
super(MFAB, self).__init__()
self.hl_conv = nn.Sequential(
md.Conv2dReLU(
in_channels,
in_channels,
kernel_size=3,
padding=1,
use_batchnorm=use_batchnorm,
),
md.Conv2dReLU(
in_channels, skip_channels, kernel_size=1, use_batchnorm=use_batchnorm,
),
)
reduced_channels = max(1, skip_channels // reduction)
self.SE_ll = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(skip_channels, reduced_channels, 1),
nn.ReLU(inplace=True),
nn.Conv2d(reduced_channels, skip_channels, 1),
nn.Sigmoid(),
)
self.SE_hl = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(skip_channels, reduced_channels, 1),
nn.ReLU(inplace=True),
nn.Conv2d(reduced_channels, skip_channels, 1),
nn.Sigmoid(),
)
self.conv1 = md.Conv2dReLU(
skip_channels
+ skip_channels, # we transform C-prime form high level to C from skip connection
out_channels,
kernel_size=3,
padding=1,
use_batchnorm=use_batchnorm,
)
self.conv2 = md.Conv2dReLU(
out_channels,
out_channels,
kernel_size=3,
padding=1,
use_batchnorm=use_batchnorm,
)
def forward(self, x, skip=None):
x = self.hl_conv(x)
x = F.interpolate(x, scale_factor=2, mode="nearest")
attention_hl = self.SE_hl(x)
if skip is not None:
attention_ll = self.SE_ll(skip)
attention_hl = attention_hl + attention_ll
x = x * attention_hl
x = torch.cat([x, skip], dim=1)
x = self.conv1(x)
x = self.conv2(x)
return x
class DecoderBlock(nn.Module):
def __init__(self, in_channels, skip_channels, out_channels, use_batchnorm=True):
super().__init__()
self.conv1 = md.Conv2dReLU(
in_channels + skip_channels,
out_channels,
kernel_size=3,
padding=1,
use_batchnorm=use_batchnorm,
)
self.conv2 = md.Conv2dReLU(
out_channels,
out_channels,
kernel_size=3,
padding=1,
use_batchnorm=use_batchnorm,
)
def forward(self, x, skip=None):
x = F.interpolate(x, scale_factor=2, mode="nearest")
if skip is not None:
x = torch.cat([x, skip], dim=1)
x = self.conv1(x)
x = self.conv2(x)
return x
class MAnetDecoder(nn.Module):
def __init__(
self,
encoder_channels,
decoder_channels,
n_blocks=5,
reduction=16,
use_batchnorm=True,
pab_channels=64,
):
super().__init__()
if n_blocks != len(decoder_channels):
raise ValueError(
"Model depth is {}, but you provide `decoder_channels` for {} blocks.".format(
n_blocks, len(decoder_channels)
)
)
# remove first skip with same spatial resolution
encoder_channels = encoder_channels[1:]
# reverse channels to start from head of encoder
encoder_channels = encoder_channels[::-1]
# computing blocks input and output channels
head_channels = encoder_channels[0]
in_channels = [head_channels] + list(decoder_channels[:-1])
skip_channels = list(encoder_channels[1:]) + [0]
out_channels = decoder_channels
self.center = PAB(head_channels, head_channels, pab_channels=pab_channels)
# combine decoder keyword arguments
kwargs = dict(use_batchnorm=use_batchnorm) # no attention type here
blocks = [
MFAB(in_ch, skip_ch, out_ch, reduction=reduction, **kwargs)
if skip_ch > 0
else DecoderBlock(in_ch, skip_ch, out_ch, **kwargs)
for in_ch, skip_ch, out_ch in zip(in_channels, skip_channels, out_channels)
]
# for the last we dont have skip connection -> use simple decoder block
self.blocks = nn.ModuleList(blocks)
def forward(self, *features):
features = features[1:] # remove first skip with same spatial resolution
features = features[::-1] # reverse channels to start from head of encoder
head = features[0]
skips = features[1:]
x = self.center(head)
for i, decoder_block in enumerate(self.blocks):
skip = skips[i] if i < len(skips) else None
x = decoder_block(x, skip)
return x