|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from segmentation_models_pytorch.base import modules as md |
|
|
|
|
|
class PAB(nn.Module): |
|
def __init__(self, in_channels, out_channels, pab_channels=64): |
|
super(PAB, self).__init__() |
|
|
|
self.pab_channels = pab_channels |
|
self.in_channels = in_channels |
|
self.top_conv = nn.Conv2d(in_channels, pab_channels, kernel_size=1) |
|
self.center_conv = nn.Conv2d(in_channels, pab_channels, kernel_size=1) |
|
self.bottom_conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1) |
|
self.map_softmax = nn.Softmax(dim=1) |
|
self.out_conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1) |
|
|
|
def forward(self, x): |
|
bsize = x.size()[0] |
|
h = x.size()[2] |
|
w = x.size()[3] |
|
x_top = self.top_conv(x) |
|
x_center = self.center_conv(x) |
|
x_bottom = self.bottom_conv(x) |
|
|
|
x_top = x_top.flatten(2) |
|
x_center = x_center.flatten(2).transpose(1, 2) |
|
x_bottom = x_bottom.flatten(2).transpose(1, 2) |
|
|
|
sp_map = torch.matmul(x_center, x_top) |
|
sp_map = self.map_softmax(sp_map.view(bsize, -1)).view(bsize, h * w, h * w) |
|
sp_map = torch.matmul(sp_map, x_bottom) |
|
sp_map = sp_map.reshape(bsize, self.in_channels, h, w) |
|
x = x + sp_map |
|
x = self.out_conv(x) |
|
return x |
|
|
|
|
|
class MFAB(nn.Module): |
|
def __init__( |
|
self, in_channels, skip_channels, out_channels, use_batchnorm=True, reduction=16 |
|
): |
|
|
|
super(MFAB, self).__init__() |
|
self.hl_conv = nn.Sequential( |
|
md.Conv2dReLU( |
|
in_channels, |
|
in_channels, |
|
kernel_size=3, |
|
padding=1, |
|
use_batchnorm=use_batchnorm, |
|
), |
|
md.Conv2dReLU( |
|
in_channels, skip_channels, kernel_size=1, use_batchnorm=use_batchnorm, |
|
), |
|
) |
|
reduced_channels = max(1, skip_channels // reduction) |
|
self.SE_ll = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(skip_channels, reduced_channels, 1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(reduced_channels, skip_channels, 1), |
|
nn.Sigmoid(), |
|
) |
|
self.SE_hl = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(skip_channels, reduced_channels, 1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(reduced_channels, skip_channels, 1), |
|
nn.Sigmoid(), |
|
) |
|
self.conv1 = md.Conv2dReLU( |
|
skip_channels |
|
+ skip_channels, |
|
out_channels, |
|
kernel_size=3, |
|
padding=1, |
|
use_batchnorm=use_batchnorm, |
|
) |
|
self.conv2 = md.Conv2dReLU( |
|
out_channels, |
|
out_channels, |
|
kernel_size=3, |
|
padding=1, |
|
use_batchnorm=use_batchnorm, |
|
) |
|
|
|
def forward(self, x, skip=None): |
|
x = self.hl_conv(x) |
|
x = F.interpolate(x, scale_factor=2, mode="nearest") |
|
attention_hl = self.SE_hl(x) |
|
if skip is not None: |
|
attention_ll = self.SE_ll(skip) |
|
attention_hl = attention_hl + attention_ll |
|
x = x * attention_hl |
|
x = torch.cat([x, skip], dim=1) |
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
return x |
|
|
|
|
|
class DecoderBlock(nn.Module): |
|
def __init__(self, in_channels, skip_channels, out_channels, use_batchnorm=True): |
|
super().__init__() |
|
self.conv1 = md.Conv2dReLU( |
|
in_channels + skip_channels, |
|
out_channels, |
|
kernel_size=3, |
|
padding=1, |
|
use_batchnorm=use_batchnorm, |
|
) |
|
self.conv2 = md.Conv2dReLU( |
|
out_channels, |
|
out_channels, |
|
kernel_size=3, |
|
padding=1, |
|
use_batchnorm=use_batchnorm, |
|
) |
|
|
|
def forward(self, x, skip=None): |
|
x = F.interpolate(x, scale_factor=2, mode="nearest") |
|
if skip is not None: |
|
x = torch.cat([x, skip], dim=1) |
|
x = self.conv1(x) |
|
x = self.conv2(x) |
|
return x |
|
|
|
|
|
class MAnetDecoder(nn.Module): |
|
def __init__( |
|
self, |
|
encoder_channels, |
|
decoder_channels, |
|
n_blocks=5, |
|
reduction=16, |
|
use_batchnorm=True, |
|
pab_channels=64, |
|
): |
|
super().__init__() |
|
|
|
if n_blocks != len(decoder_channels): |
|
raise ValueError( |
|
"Model depth is {}, but you provide `decoder_channels` for {} blocks.".format( |
|
n_blocks, len(decoder_channels) |
|
) |
|
) |
|
|
|
|
|
encoder_channels = encoder_channels[1:] |
|
|
|
|
|
encoder_channels = encoder_channels[::-1] |
|
|
|
|
|
head_channels = encoder_channels[0] |
|
in_channels = [head_channels] + list(decoder_channels[:-1]) |
|
skip_channels = list(encoder_channels[1:]) + [0] |
|
out_channels = decoder_channels |
|
|
|
self.center = PAB(head_channels, head_channels, pab_channels=pab_channels) |
|
|
|
|
|
kwargs = dict(use_batchnorm=use_batchnorm) |
|
blocks = [ |
|
MFAB(in_ch, skip_ch, out_ch, reduction=reduction, **kwargs) |
|
if skip_ch > 0 |
|
else DecoderBlock(in_ch, skip_ch, out_ch, **kwargs) |
|
for in_ch, skip_ch, out_ch in zip(in_channels, skip_channels, out_channels) |
|
] |
|
|
|
self.blocks = nn.ModuleList(blocks) |
|
|
|
def forward(self, *features): |
|
|
|
features = features[1:] |
|
features = features[::-1] |
|
|
|
head = features[0] |
|
skips = features[1:] |
|
|
|
x = self.center(head) |
|
for i, decoder_block in enumerate(self.blocks): |
|
skip = skips[i] if i < len(skips) else None |
|
x = decoder_block(x, skip) |
|
|
|
return x |
|
|