|
from typing import Optional, Union |
|
|
|
from segmentation_models_pytorch.encoders import get_encoder |
|
from segmentation_models_pytorch.base import ( |
|
SegmentationModel, |
|
SegmentationHead, |
|
ClassificationHead, |
|
) |
|
from .decoder import PANDecoder |
|
|
|
|
|
class PAN(SegmentationModel): |
|
"""Implementation of PAN_ (Pyramid Attention Network). |
|
|
|
Note: |
|
Currently works with shape of input tensor >= [B x C x 128 x 128] for pytorch <= 1.1.0 |
|
and with shape of input tensor >= [B x C x 256 x 256] for pytorch == 1.3.1 |
|
|
|
Args: |
|
encoder_name: Name of the classification model that will be used as an encoder (a.k.a backbone) |
|
to extract features of different spatial resolution |
|
encoder_weights: One of **None** (random initialization), **"imagenet"** (pre-training on ImageNet) and |
|
other pretrained weights (see table with available weights for each encoder_name) |
|
encoder_output_stride: 16 or 32, if 16 use dilation in encoder last layer. |
|
Doesn't work with ***ception***, **vgg***, **densenet*`** backbones.Default is 16. |
|
decoder_channels: A number of convolution layer filters in decoder blocks |
|
in_channels: A number of input channels for the model, default is 3 (RGB images) |
|
classes: A number of classes for output mask (or you can think as a number of channels of output mask) |
|
activation: An activation function to apply after the final convolution layer. |
|
Available options are **"sigmoid"**, **"softmax"**, **"logsoftmax"**, **"tanh"**, **"identity"**, |
|
**callable** and **None**. |
|
Default is **None** |
|
upsampling: Final upsampling factor. Default is 4 to preserve input-output spatial shape identity |
|
aux_params: Dictionary with parameters of the auxiliary output (classification head). Auxiliary output is build |
|
on top of encoder if **aux_params** is not **None** (default). Supported params: |
|
- classes (int): A number of classes |
|
- pooling (str): One of "max", "avg". Default is "avg" |
|
- dropout (float): Dropout factor in [0, 1) |
|
- activation (str): An activation function to apply "sigmoid"/"softmax" |
|
(could be **None** to return logits) |
|
|
|
Returns: |
|
``torch.nn.Module``: **PAN** |
|
|
|
.. _PAN: |
|
https://arxiv.org/abs/1805.10180 |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
encoder_name: str = "resnet34", |
|
encoder_weights: Optional[str] = "imagenet", |
|
encoder_output_stride: int = 16, |
|
decoder_channels: int = 32, |
|
in_channels: int = 3, |
|
classes: int = 1, |
|
activation: Optional[Union[str, callable]] = None, |
|
upsampling: int = 4, |
|
aux_params: Optional[dict] = None, |
|
): |
|
super().__init__() |
|
|
|
if encoder_output_stride not in [16, 32]: |
|
raise ValueError( |
|
"PAN support output stride 16 or 32, got {}".format( |
|
encoder_output_stride |
|
) |
|
) |
|
|
|
self.encoder = get_encoder( |
|
encoder_name, |
|
in_channels=in_channels, |
|
depth=5, |
|
weights=encoder_weights, |
|
output_stride=encoder_output_stride, |
|
) |
|
|
|
self.decoder = PANDecoder( |
|
encoder_channels=self.encoder.out_channels, |
|
decoder_channels=decoder_channels, |
|
) |
|
|
|
self.segmentation_head = SegmentationHead( |
|
in_channels=decoder_channels, |
|
out_channels=classes, |
|
activation=activation, |
|
kernel_size=3, |
|
upsampling=upsampling, |
|
) |
|
|
|
if aux_params is not None: |
|
self.classification_head = ClassificationHead( |
|
in_channels=self.encoder.out_channels[-1], **aux_params |
|
) |
|
else: |
|
self.classification_head = None |
|
|
|
self.name = "pan-{}".format(encoder_name) |
|
self.initialize() |
|
|