ghlee94's picture
Init
2a13495
"""Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin`
Attributes:
_out_channels (list of int): specify number of channels for each encoder feature tensor
_depth (int): specify number of stages in decoder (in other words number of downsampling operations)
_in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3)
Methods:
forward(self, x: torch.Tensor)
produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of
shape NCHW (features should be sorted in descending order according to spatial resolution, starting
with resolution same as input `x` tensor).
Input: `x` with shape (1, 3, 64, 64)
Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes
[(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8),
(1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ)
also should support number of features according to specified depth, e.g. if depth = 5,
number of feature tensors = 6 (one with same resolution as input and 5 downsampled),
depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled).
"""
import re
import torch.nn as nn
from pretrainedmodels.models.torchvision_models import pretrained_settings
from torchvision.models.densenet import DenseNet
from ._base import EncoderMixin
class TransitionWithSkip(nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, x):
for module in self.module:
x = module(x)
if isinstance(module, nn.ReLU):
skip = x
return x, skip
class DenseNetEncoder(DenseNet, EncoderMixin):
def __init__(self, out_channels, depth=5, **kwargs):
super().__init__(**kwargs)
self._out_channels = out_channels
self._depth = depth
self._in_channels = 3
del self.classifier
def make_dilated(self, *args, **kwargs):
raise ValueError(
"DenseNet encoders do not support dilated mode "
"due to pooling operation for downsampling!"
)
def get_stages(self):
return [
nn.Identity(),
nn.Sequential(
self.features.conv0, self.features.norm0, self.features.relu0
),
nn.Sequential(
self.features.pool0,
self.features.denseblock1,
TransitionWithSkip(self.features.transition1),
),
nn.Sequential(
self.features.denseblock2, TransitionWithSkip(self.features.transition2)
),
nn.Sequential(
self.features.denseblock3, TransitionWithSkip(self.features.transition3)
),
nn.Sequential(self.features.denseblock4, self.features.norm5),
]
def forward(self, x):
stages = self.get_stages()
features = []
for i in range(self._depth + 1):
x = stages[i](x)
if isinstance(x, (list, tuple)):
x, skip = x
features.append(skip)
else:
features.append(x)
return features
def load_state_dict(self, state_dict):
pattern = re.compile(
r"^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$"
)
for key in list(state_dict.keys()):
res = pattern.match(key)
if res:
new_key = res.group(1) + res.group(2)
state_dict[new_key] = state_dict[key]
del state_dict[key]
# remove linear
state_dict.pop("classifier.bias", None)
state_dict.pop("classifier.weight", None)
super().load_state_dict(state_dict)
densenet_encoders = {
"densenet121": {
"encoder": DenseNetEncoder,
"pretrained_settings": pretrained_settings["densenet121"],
"params": {
"out_channels": (3, 64, 256, 512, 1024, 1024),
"num_init_features": 64,
"growth_rate": 32,
"block_config": (6, 12, 24, 16),
},
},
"densenet169": {
"encoder": DenseNetEncoder,
"pretrained_settings": pretrained_settings["densenet169"],
"params": {
"out_channels": (3, 64, 256, 512, 1280, 1664),
"num_init_features": 64,
"growth_rate": 32,
"block_config": (6, 12, 32, 32),
},
},
"densenet201": {
"encoder": DenseNetEncoder,
"pretrained_settings": pretrained_settings["densenet201"],
"params": {
"out_channels": (3, 64, 256, 512, 1792, 1920),
"num_init_features": 64,
"growth_rate": 32,
"block_config": (6, 12, 48, 32),
},
},
"densenet161": {
"encoder": DenseNetEncoder,
"pretrained_settings": pretrained_settings["densenet161"],
"params": {
"out_channels": (3, 96, 384, 768, 2112, 2208),
"num_init_features": 96,
"growth_rate": 48,
"block_config": (6, 12, 36, 24),
},
},
}