|
"""Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin` |
|
|
|
Attributes: |
|
|
|
_out_channels (list of int): specify number of channels for each encoder feature tensor |
|
_depth (int): specify number of stages in decoder (in other words number of downsampling operations) |
|
_in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3) |
|
|
|
Methods: |
|
|
|
forward(self, x: torch.Tensor) |
|
produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of |
|
shape NCHW (features should be sorted in descending order according to spatial resolution, starting |
|
with resolution same as input `x` tensor). |
|
|
|
Input: `x` with shape (1, 3, 64, 64) |
|
Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes |
|
[(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8), |
|
(1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ) |
|
|
|
also should support number of features according to specified depth, e.g. if depth = 5, |
|
number of feature tensors = 6 (one with same resolution as input and 5 downsampled), |
|
depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). |
|
""" |
|
|
|
import re |
|
import torch.nn as nn |
|
|
|
from pretrainedmodels.models.torchvision_models import pretrained_settings |
|
from torchvision.models.densenet import DenseNet |
|
|
|
from ._base import EncoderMixin |
|
|
|
|
|
class TransitionWithSkip(nn.Module): |
|
def __init__(self, module): |
|
super().__init__() |
|
self.module = module |
|
|
|
def forward(self, x): |
|
for module in self.module: |
|
x = module(x) |
|
if isinstance(module, nn.ReLU): |
|
skip = x |
|
return x, skip |
|
|
|
|
|
class DenseNetEncoder(DenseNet, EncoderMixin): |
|
def __init__(self, out_channels, depth=5, **kwargs): |
|
super().__init__(**kwargs) |
|
self._out_channels = out_channels |
|
self._depth = depth |
|
self._in_channels = 3 |
|
del self.classifier |
|
|
|
def make_dilated(self, *args, **kwargs): |
|
raise ValueError( |
|
"DenseNet encoders do not support dilated mode " |
|
"due to pooling operation for downsampling!" |
|
) |
|
|
|
def get_stages(self): |
|
return [ |
|
nn.Identity(), |
|
nn.Sequential( |
|
self.features.conv0, self.features.norm0, self.features.relu0 |
|
), |
|
nn.Sequential( |
|
self.features.pool0, |
|
self.features.denseblock1, |
|
TransitionWithSkip(self.features.transition1), |
|
), |
|
nn.Sequential( |
|
self.features.denseblock2, TransitionWithSkip(self.features.transition2) |
|
), |
|
nn.Sequential( |
|
self.features.denseblock3, TransitionWithSkip(self.features.transition3) |
|
), |
|
nn.Sequential(self.features.denseblock4, self.features.norm5), |
|
] |
|
|
|
def forward(self, x): |
|
|
|
stages = self.get_stages() |
|
|
|
features = [] |
|
for i in range(self._depth + 1): |
|
x = stages[i](x) |
|
if isinstance(x, (list, tuple)): |
|
x, skip = x |
|
features.append(skip) |
|
else: |
|
features.append(x) |
|
|
|
return features |
|
|
|
def load_state_dict(self, state_dict): |
|
pattern = re.compile( |
|
r"^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$" |
|
) |
|
for key in list(state_dict.keys()): |
|
res = pattern.match(key) |
|
if res: |
|
new_key = res.group(1) + res.group(2) |
|
state_dict[new_key] = state_dict[key] |
|
del state_dict[key] |
|
|
|
|
|
state_dict.pop("classifier.bias", None) |
|
state_dict.pop("classifier.weight", None) |
|
|
|
super().load_state_dict(state_dict) |
|
|
|
|
|
densenet_encoders = { |
|
"densenet121": { |
|
"encoder": DenseNetEncoder, |
|
"pretrained_settings": pretrained_settings["densenet121"], |
|
"params": { |
|
"out_channels": (3, 64, 256, 512, 1024, 1024), |
|
"num_init_features": 64, |
|
"growth_rate": 32, |
|
"block_config": (6, 12, 24, 16), |
|
}, |
|
}, |
|
"densenet169": { |
|
"encoder": DenseNetEncoder, |
|
"pretrained_settings": pretrained_settings["densenet169"], |
|
"params": { |
|
"out_channels": (3, 64, 256, 512, 1280, 1664), |
|
"num_init_features": 64, |
|
"growth_rate": 32, |
|
"block_config": (6, 12, 32, 32), |
|
}, |
|
}, |
|
"densenet201": { |
|
"encoder": DenseNetEncoder, |
|
"pretrained_settings": pretrained_settings["densenet201"], |
|
"params": { |
|
"out_channels": (3, 64, 256, 512, 1792, 1920), |
|
"num_init_features": 64, |
|
"growth_rate": 32, |
|
"block_config": (6, 12, 48, 32), |
|
}, |
|
}, |
|
"densenet161": { |
|
"encoder": DenseNetEncoder, |
|
"pretrained_settings": pretrained_settings["densenet161"], |
|
"params": { |
|
"out_channels": (3, 96, 384, 768, 2112, 2208), |
|
"num_init_features": 96, |
|
"growth_rate": 48, |
|
"block_config": (6, 12, 36, 24), |
|
}, |
|
}, |
|
} |
|
|