ghlee94's picture
Init
2a13495
"""Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin`
Attributes:
_out_channels (list of int): specify number of channels for each encoder feature tensor
_depth (int): specify number of stages in decoder (in other words number of downsampling operations)
_in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3)
Methods:
forward(self, x: torch.Tensor)
produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of
shape NCHW (features should be sorted in descending order according to spatial resolution, starting
with resolution same as input `x` tensor).
Input: `x` with shape (1, 3, 64, 64)
Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes
[(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8),
(1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ)
also should support number of features according to specified depth, e.g. if depth = 5,
number of feature tensors = 6 (one with same resolution as input and 5 downsampled),
depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled).
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
from pretrainedmodels.models.dpn import DPN
from pretrainedmodels.models.dpn import pretrained_settings
from ._base import EncoderMixin
class DPNEncoder(DPN, EncoderMixin):
def __init__(self, stage_idxs, out_channels, depth=5, **kwargs):
super().__init__(**kwargs)
self._stage_idxs = stage_idxs
self._depth = depth
self._out_channels = out_channels
self._in_channels = 3
del self.last_linear
def get_stages(self):
return [
nn.Identity(),
nn.Sequential(
self.features[0].conv, self.features[0].bn, self.features[0].act
),
nn.Sequential(
self.features[0].pool, self.features[1 : self._stage_idxs[0]]
),
self.features[self._stage_idxs[0] : self._stage_idxs[1]],
self.features[self._stage_idxs[1] : self._stage_idxs[2]],
self.features[self._stage_idxs[2] : self._stage_idxs[3]],
]
def forward(self, x):
stages = self.get_stages()
features = []
for i in range(self._depth + 1):
x = stages[i](x)
if isinstance(x, (list, tuple)):
features.append(F.relu(torch.cat(x, dim=1), inplace=True))
else:
features.append(x)
return features
def load_state_dict(self, state_dict, **kwargs):
state_dict.pop("last_linear.bias", None)
state_dict.pop("last_linear.weight", None)
super().load_state_dict(state_dict, **kwargs)
dpn_encoders = {
"dpn68": {
"encoder": DPNEncoder,
"pretrained_settings": pretrained_settings["dpn68"],
"params": {
"stage_idxs": (4, 8, 20, 24),
"out_channels": (3, 10, 144, 320, 704, 832),
"groups": 32,
"inc_sec": (16, 32, 32, 64),
"k_r": 128,
"k_sec": (3, 4, 12, 3),
"num_classes": 1000,
"num_init_features": 10,
"small": True,
"test_time_pool": True,
},
},
"dpn68b": {
"encoder": DPNEncoder,
"pretrained_settings": pretrained_settings["dpn68b"],
"params": {
"stage_idxs": (4, 8, 20, 24),
"out_channels": (3, 10, 144, 320, 704, 832),
"b": True,
"groups": 32,
"inc_sec": (16, 32, 32, 64),
"k_r": 128,
"k_sec": (3, 4, 12, 3),
"num_classes": 1000,
"num_init_features": 10,
"small": True,
"test_time_pool": True,
},
},
"dpn92": {
"encoder": DPNEncoder,
"pretrained_settings": pretrained_settings["dpn92"],
"params": {
"stage_idxs": (4, 8, 28, 32),
"out_channels": (3, 64, 336, 704, 1552, 2688),
"groups": 32,
"inc_sec": (16, 32, 24, 128),
"k_r": 96,
"k_sec": (3, 4, 20, 3),
"num_classes": 1000,
"num_init_features": 64,
"test_time_pool": True,
},
},
"dpn98": {
"encoder": DPNEncoder,
"pretrained_settings": pretrained_settings["dpn98"],
"params": {
"stage_idxs": (4, 10, 30, 34),
"out_channels": (3, 96, 336, 768, 1728, 2688),
"groups": 40,
"inc_sec": (16, 32, 32, 128),
"k_r": 160,
"k_sec": (3, 6, 20, 3),
"num_classes": 1000,
"num_init_features": 96,
"test_time_pool": True,
},
},
"dpn107": {
"encoder": DPNEncoder,
"pretrained_settings": pretrained_settings["dpn107"],
"params": {
"stage_idxs": (5, 13, 33, 37),
"out_channels": (3, 128, 376, 1152, 2432, 2688),
"groups": 50,
"inc_sec": (20, 64, 64, 128),
"k_r": 200,
"k_sec": (4, 8, 20, 3),
"num_classes": 1000,
"num_init_features": 128,
"test_time_pool": True,
},
},
"dpn131": {
"encoder": DPNEncoder,
"pretrained_settings": pretrained_settings["dpn131"],
"params": {
"stage_idxs": (5, 13, 41, 45),
"out_channels": (3, 128, 352, 832, 1984, 2688),
"groups": 40,
"inc_sec": (16, 32, 32, 128),
"k_r": 160,
"k_sec": (4, 8, 28, 3),
"num_classes": 1000,
"num_init_features": 128,
"test_time_pool": True,
},
},
}