|
"""Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin` |
|
|
|
Attributes: |
|
|
|
_out_channels (list of int): specify number of channels for each encoder feature tensor |
|
_depth (int): specify number of stages in decoder (in other words number of downsampling operations) |
|
_in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3) |
|
|
|
Methods: |
|
|
|
forward(self, x: torch.Tensor) |
|
produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of |
|
shape NCHW (features should be sorted in descending order according to spatial resolution, starting |
|
with resolution same as input `x` tensor). |
|
|
|
Input: `x` with shape (1, 3, 64, 64) |
|
Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes |
|
[(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8), |
|
(1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ) |
|
|
|
also should support number of features according to specified depth, e.g. if depth = 5, |
|
number of feature tensors = 6 (one with same resolution as input and 5 downsampled), |
|
depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from pretrainedmodels.models.dpn import DPN |
|
from pretrainedmodels.models.dpn import pretrained_settings |
|
|
|
from ._base import EncoderMixin |
|
|
|
|
|
class DPNEncoder(DPN, EncoderMixin): |
|
def __init__(self, stage_idxs, out_channels, depth=5, **kwargs): |
|
super().__init__(**kwargs) |
|
self._stage_idxs = stage_idxs |
|
self._depth = depth |
|
self._out_channels = out_channels |
|
self._in_channels = 3 |
|
|
|
del self.last_linear |
|
|
|
def get_stages(self): |
|
return [ |
|
nn.Identity(), |
|
nn.Sequential( |
|
self.features[0].conv, self.features[0].bn, self.features[0].act |
|
), |
|
nn.Sequential( |
|
self.features[0].pool, self.features[1 : self._stage_idxs[0]] |
|
), |
|
self.features[self._stage_idxs[0] : self._stage_idxs[1]], |
|
self.features[self._stage_idxs[1] : self._stage_idxs[2]], |
|
self.features[self._stage_idxs[2] : self._stage_idxs[3]], |
|
] |
|
|
|
def forward(self, x): |
|
|
|
stages = self.get_stages() |
|
|
|
features = [] |
|
for i in range(self._depth + 1): |
|
x = stages[i](x) |
|
if isinstance(x, (list, tuple)): |
|
features.append(F.relu(torch.cat(x, dim=1), inplace=True)) |
|
else: |
|
features.append(x) |
|
|
|
return features |
|
|
|
def load_state_dict(self, state_dict, **kwargs): |
|
state_dict.pop("last_linear.bias", None) |
|
state_dict.pop("last_linear.weight", None) |
|
super().load_state_dict(state_dict, **kwargs) |
|
|
|
|
|
dpn_encoders = { |
|
"dpn68": { |
|
"encoder": DPNEncoder, |
|
"pretrained_settings": pretrained_settings["dpn68"], |
|
"params": { |
|
"stage_idxs": (4, 8, 20, 24), |
|
"out_channels": (3, 10, 144, 320, 704, 832), |
|
"groups": 32, |
|
"inc_sec": (16, 32, 32, 64), |
|
"k_r": 128, |
|
"k_sec": (3, 4, 12, 3), |
|
"num_classes": 1000, |
|
"num_init_features": 10, |
|
"small": True, |
|
"test_time_pool": True, |
|
}, |
|
}, |
|
"dpn68b": { |
|
"encoder": DPNEncoder, |
|
"pretrained_settings": pretrained_settings["dpn68b"], |
|
"params": { |
|
"stage_idxs": (4, 8, 20, 24), |
|
"out_channels": (3, 10, 144, 320, 704, 832), |
|
"b": True, |
|
"groups": 32, |
|
"inc_sec": (16, 32, 32, 64), |
|
"k_r": 128, |
|
"k_sec": (3, 4, 12, 3), |
|
"num_classes": 1000, |
|
"num_init_features": 10, |
|
"small": True, |
|
"test_time_pool": True, |
|
}, |
|
}, |
|
"dpn92": { |
|
"encoder": DPNEncoder, |
|
"pretrained_settings": pretrained_settings["dpn92"], |
|
"params": { |
|
"stage_idxs": (4, 8, 28, 32), |
|
"out_channels": (3, 64, 336, 704, 1552, 2688), |
|
"groups": 32, |
|
"inc_sec": (16, 32, 24, 128), |
|
"k_r": 96, |
|
"k_sec": (3, 4, 20, 3), |
|
"num_classes": 1000, |
|
"num_init_features": 64, |
|
"test_time_pool": True, |
|
}, |
|
}, |
|
"dpn98": { |
|
"encoder": DPNEncoder, |
|
"pretrained_settings": pretrained_settings["dpn98"], |
|
"params": { |
|
"stage_idxs": (4, 10, 30, 34), |
|
"out_channels": (3, 96, 336, 768, 1728, 2688), |
|
"groups": 40, |
|
"inc_sec": (16, 32, 32, 128), |
|
"k_r": 160, |
|
"k_sec": (3, 6, 20, 3), |
|
"num_classes": 1000, |
|
"num_init_features": 96, |
|
"test_time_pool": True, |
|
}, |
|
}, |
|
"dpn107": { |
|
"encoder": DPNEncoder, |
|
"pretrained_settings": pretrained_settings["dpn107"], |
|
"params": { |
|
"stage_idxs": (5, 13, 33, 37), |
|
"out_channels": (3, 128, 376, 1152, 2432, 2688), |
|
"groups": 50, |
|
"inc_sec": (20, 64, 64, 128), |
|
"k_r": 200, |
|
"k_sec": (4, 8, 20, 3), |
|
"num_classes": 1000, |
|
"num_init_features": 128, |
|
"test_time_pool": True, |
|
}, |
|
}, |
|
"dpn131": { |
|
"encoder": DPNEncoder, |
|
"pretrained_settings": pretrained_settings["dpn131"], |
|
"params": { |
|
"stage_idxs": (5, 13, 41, 45), |
|
"out_channels": (3, 128, 352, 832, 1984, 2688), |
|
"groups": 40, |
|
"inc_sec": (16, 32, 32, 128), |
|
"k_r": 160, |
|
"k_sec": (4, 8, 28, 3), |
|
"num_classes": 1000, |
|
"num_init_features": 128, |
|
"test_time_pool": True, |
|
}, |
|
}, |
|
} |
|
|