ghlee94's picture
Init
2a13495
# ---------------------------------------------------------------
# Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
#
# This work is licensed under the NVIDIA Source Code License
# ---------------------------------------------------------------
import math
import torch
import torch.nn as nn
from functools import partial
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
class Mlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.dwconv = DWConv(hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x, H, W):
x = self.fc1(x)
x = self.dwconv(x, H, W)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
sr_ratio=1,
):
super().__init__()
assert (
dim % num_heads == 0
), f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.sr_ratio = sr_ratio
if sr_ratio > 1:
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
self.norm = nn.LayerNorm(dim)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x, H, W):
B, N, C = x.shape
q = (
self.q(x)
.reshape(B, N, self.num_heads, C // self.num_heads)
.permute(0, 2, 1, 3)
)
if self.sr_ratio > 1:
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
x_ = self.norm(x_)
kv = (
self.kv(x_)
.reshape(B, -1, 2, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
else:
kv = (
self.kv(x)
.reshape(B, -1, 2, self.num_heads, C // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
k, v = kv[0], kv[1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=False,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
sr_ratio=1,
):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
sr_ratio=sr_ratio,
)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x, H, W):
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
return x
class OverlapPatchEmbed(nn.Module):
"""Image to Patch Embedding"""
def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
self.num_patches = self.H * self.W
self.proj = nn.Conv2d(
in_chans,
embed_dim,
kernel_size=patch_size,
stride=stride,
padding=(patch_size[0] // 2, patch_size[1] // 2),
)
self.norm = nn.LayerNorm(embed_dim)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def forward(self, x):
x = self.proj(x)
_, _, H, W = x.shape
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
return x, H, W
class MixVisionTransformer(nn.Module):
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
embed_dims=[64, 128, 256, 512],
num_heads=[1, 2, 4, 8],
mlp_ratios=[4, 4, 4, 4],
qkv_bias=False,
qk_scale=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=nn.LayerNorm,
depths=[3, 4, 6, 3],
sr_ratios=[8, 4, 2, 1],
):
super().__init__()
self.num_classes = num_classes
self.depths = depths
# patch_embed
self.patch_embed1 = OverlapPatchEmbed(
img_size=img_size,
patch_size=7,
stride=4,
in_chans=in_chans,
embed_dim=embed_dims[0],
)
self.patch_embed2 = OverlapPatchEmbed(
img_size=img_size // 4,
patch_size=3,
stride=2,
in_chans=embed_dims[0],
embed_dim=embed_dims[1],
)
self.patch_embed3 = OverlapPatchEmbed(
img_size=img_size // 8,
patch_size=3,
stride=2,
in_chans=embed_dims[1],
embed_dim=embed_dims[2],
)
self.patch_embed4 = OverlapPatchEmbed(
img_size=img_size // 16,
patch_size=3,
stride=2,
in_chans=embed_dims[2],
embed_dim=embed_dims[3],
)
# transformer encoder
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
] # stochastic depth decay rule
cur = 0
self.block1 = nn.ModuleList(
[
Block(
dim=embed_dims[0],
num_heads=num_heads[0],
mlp_ratio=mlp_ratios[0],
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[cur + i],
norm_layer=norm_layer,
sr_ratio=sr_ratios[0],
)
for i in range(depths[0])
]
)
self.norm1 = norm_layer(embed_dims[0])
cur += depths[0]
self.block2 = nn.ModuleList(
[
Block(
dim=embed_dims[1],
num_heads=num_heads[1],
mlp_ratio=mlp_ratios[1],
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[cur + i],
norm_layer=norm_layer,
sr_ratio=sr_ratios[1],
)
for i in range(depths[1])
]
)
self.norm2 = norm_layer(embed_dims[1])
cur += depths[1]
self.block3 = nn.ModuleList(
[
Block(
dim=embed_dims[2],
num_heads=num_heads[2],
mlp_ratio=mlp_ratios[2],
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[cur + i],
norm_layer=norm_layer,
sr_ratio=sr_ratios[2],
)
for i in range(depths[2])
]
)
self.norm3 = norm_layer(embed_dims[2])
cur += depths[2]
self.block4 = nn.ModuleList(
[
Block(
dim=embed_dims[3],
num_heads=num_heads[3],
mlp_ratio=mlp_ratios[3],
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[cur + i],
norm_layer=norm_layer,
sr_ratio=sr_ratios[3],
)
for i in range(depths[3])
]
)
self.norm4 = norm_layer(embed_dims[3])
# classification head
# self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
def init_weights(self, pretrained=None):
pass
def reset_drop_path(self, drop_path_rate):
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
cur = 0
for i in range(self.depths[0]):
self.block1[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[0]
for i in range(self.depths[1]):
self.block2[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[1]
for i in range(self.depths[2]):
self.block3[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[2]
for i in range(self.depths[3]):
self.block4[i].drop_path.drop_prob = dpr[cur + i]
def freeze_patch_emb(self):
self.patch_embed1.requires_grad = False
@torch.jit.ignore
def no_weight_decay(self):
return {
"pos_embed1",
"pos_embed2",
"pos_embed3",
"pos_embed4",
"cls_token",
} # has pos_embed may be better
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=""):
self.num_classes = num_classes
self.head = (
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
)
def forward_features(self, x):
B = x.shape[0]
outs = []
# stage 1
x, H, W = self.patch_embed1(x)
for i, blk in enumerate(self.block1):
x = blk(x, H, W)
x = self.norm1(x)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
outs.append(x)
# stage 2
x, H, W = self.patch_embed2(x)
for i, blk in enumerate(self.block2):
x = blk(x, H, W)
x = self.norm2(x)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
outs.append(x)
# stage 3
x, H, W = self.patch_embed3(x)
for i, blk in enumerate(self.block3):
x = blk(x, H, W)
x = self.norm3(x)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
outs.append(x)
# stage 4
x, H, W = self.patch_embed4(x)
for i, blk in enumerate(self.block4):
x = blk(x, H, W)
x = self.norm4(x)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
outs.append(x)
return outs
def forward(self, x):
x = self.forward_features(x)
# x = self.head(x)
return x
class DWConv(nn.Module):
def __init__(self, dim=768):
super(DWConv, self).__init__()
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
def forward(self, x, H, W):
B, N, C = x.shape
x = x.transpose(1, 2).view(B, C, H, W)
x = self.dwconv(x)
x = x.flatten(2).transpose(1, 2)
return x
# ---------------------------------------------------------------
# End of NVIDIA code
# ---------------------------------------------------------------
from ._base import EncoderMixin # noqa E402
class MixVisionTransformerEncoder(MixVisionTransformer, EncoderMixin):
def __init__(self, out_channels, depth=5, **kwargs):
super().__init__(**kwargs)
self._out_channels = out_channels
self._depth = depth
self._in_channels = 3
def make_dilated(self, *args, **kwargs):
raise ValueError("MixVisionTransformer encoder does not support dilated mode")
def set_in_channels(self, in_channels, *args, **kwargs):
if in_channels != 3:
raise ValueError(
"MixVisionTransformer encoder does not support in_channels setting other than 3"
)
def forward(self, x):
# create dummy output for the first block
B, C, H, W = x.shape
dummy = torch.empty([B, 0, H // 2, W // 2], dtype=x.dtype, device=x.device)
return [x, dummy] + self.forward_features(x)[: self._depth - 1]
def load_state_dict(self, state_dict):
state_dict.pop("head.weight", None)
state_dict.pop("head.bias", None)
return super().load_state_dict(state_dict)
def get_pretrained_cfg(name):
return {
"url": "https://github.com/qubvel/segmentation_models.pytorch/releases/download/v0.0.2/{}.pth".format(
name
),
"input_space": "RGB",
"input_size": [3, 224, 224],
"input_range": [0, 1],
"mean": [0.485, 0.456, 0.406],
"std": [0.229, 0.224, 0.225],
}
mix_transformer_encoders = {
"mit_b0": {
"encoder": MixVisionTransformerEncoder,
"pretrained_settings": {"imagenet": get_pretrained_cfg("mit_b0"),},
"params": dict(
out_channels=(3, 0, 32, 64, 160, 256),
patch_size=4,
embed_dims=[32, 64, 160, 256],
num_heads=[1, 2, 5, 8],
mlp_ratios=[4, 4, 4, 4],
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
depths=[2, 2, 2, 2],
sr_ratios=[8, 4, 2, 1],
drop_rate=0.0,
drop_path_rate=0.1,
),
},
"mit_b1": {
"encoder": MixVisionTransformerEncoder,
"pretrained_settings": {"imagenet": get_pretrained_cfg("mit_b1"),},
"params": dict(
out_channels=(3, 0, 64, 128, 320, 512),
patch_size=4,
embed_dims=[64, 128, 320, 512],
num_heads=[1, 2, 5, 8],
mlp_ratios=[4, 4, 4, 4],
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
depths=[2, 2, 2, 2],
sr_ratios=[8, 4, 2, 1],
drop_rate=0.0,
drop_path_rate=0.1,
),
},
"mit_b2": {
"encoder": MixVisionTransformerEncoder,
"pretrained_settings": {"imagenet": get_pretrained_cfg("mit_b2"),},
"params": dict(
out_channels=(3, 0, 64, 128, 320, 512),
patch_size=4,
embed_dims=[64, 128, 320, 512],
num_heads=[1, 2, 5, 8],
mlp_ratios=[4, 4, 4, 4],
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
depths=[3, 4, 6, 3],
sr_ratios=[8, 4, 2, 1],
drop_rate=0.0,
drop_path_rate=0.1,
),
},
"mit_b3": {
"encoder": MixVisionTransformerEncoder,
"pretrained_settings": {"imagenet": get_pretrained_cfg("mit_b3"),},
"params": dict(
out_channels=(3, 0, 64, 128, 320, 512),
patch_size=4,
embed_dims=[64, 128, 320, 512],
num_heads=[1, 2, 5, 8],
mlp_ratios=[4, 4, 4, 4],
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
depths=[3, 4, 18, 3],
sr_ratios=[8, 4, 2, 1],
drop_rate=0.0,
drop_path_rate=0.1,
),
},
"mit_b4": {
"encoder": MixVisionTransformerEncoder,
"pretrained_settings": {"imagenet": get_pretrained_cfg("mit_b4"),},
"params": dict(
out_channels=(3, 0, 64, 128, 320, 512),
patch_size=4,
embed_dims=[64, 128, 320, 512],
num_heads=[1, 2, 5, 8],
mlp_ratios=[4, 4, 4, 4],
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
depths=[3, 8, 27, 3],
sr_ratios=[8, 4, 2, 1],
drop_rate=0.0,
drop_path_rate=0.1,
),
},
"mit_b5": {
"encoder": MixVisionTransformerEncoder,
"pretrained_settings": {"imagenet": get_pretrained_cfg("mit_b5"),},
"params": dict(
out_channels=(3, 0, 64, 128, 320, 512),
patch_size=4,
embed_dims=[64, 128, 320, 512],
num_heads=[1, 2, 5, 8],
mlp_ratios=[4, 4, 4, 4],
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
depths=[3, 6, 40, 3],
sr_ratios=[8, 4, 2, 1],
drop_rate=0.0,
drop_path_rate=0.1,
),
},
}