ghlee94's picture
Init
2a13495
"""Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin`
Attributes:
_out_channels (list of int): specify number of channels for each encoder feature tensor
_depth (int): specify number of stages in decoder (in other words number of downsampling operations)
_in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3)
Methods:
forward(self, x: torch.Tensor)
produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of
shape NCHW (features should be sorted in descending order according to spatial resolution, starting
with resolution same as input `x` tensor).
Input: `x` with shape (1, 3, 64, 64)
Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes
[(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8),
(1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ)
also should support number of features according to specified depth, e.g. if depth = 5,
number of feature tensors = 6 (one with same resolution as input and 5 downsampled),
depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled).
"""
import torch.nn as nn
from pretrainedmodels.models.senet import (
SENet,
SEBottleneck,
SEResNetBottleneck,
SEResNeXtBottleneck,
pretrained_settings,
)
from ._base import EncoderMixin
class SENetEncoder(SENet, EncoderMixin):
def __init__(self, out_channels, depth=5, **kwargs):
super().__init__(**kwargs)
self._out_channels = out_channels
self._depth = depth
self._in_channels = 3
del self.last_linear
del self.avg_pool
def get_stages(self):
return [
nn.Identity(),
self.layer0[:-1],
nn.Sequential(self.layer0[-1], self.layer1),
self.layer2,
self.layer3,
self.layer4,
]
def forward(self, x):
stages = self.get_stages()
features = []
for i in range(self._depth + 1):
x = stages[i](x)
features.append(x)
return features
def load_state_dict(self, state_dict, **kwargs):
state_dict.pop("last_linear.bias", None)
state_dict.pop("last_linear.weight", None)
super().load_state_dict(state_dict, **kwargs)
senet_encoders = {
"senet154": {
"encoder": SENetEncoder,
"pretrained_settings": pretrained_settings["senet154"],
"params": {
"out_channels": (3, 128, 256, 512, 1024, 2048),
"block": SEBottleneck,
"dropout_p": 0.2,
"groups": 64,
"layers": [3, 8, 36, 3],
"num_classes": 1000,
"reduction": 16,
},
},
"se_resnet50": {
"encoder": SENetEncoder,
"pretrained_settings": pretrained_settings["se_resnet50"],
"params": {
"out_channels": (3, 64, 256, 512, 1024, 2048),
"block": SEResNetBottleneck,
"layers": [3, 4, 6, 3],
"downsample_kernel_size": 1,
"downsample_padding": 0,
"dropout_p": None,
"groups": 1,
"inplanes": 64,
"input_3x3": False,
"num_classes": 1000,
"reduction": 16,
},
},
"se_resnet101": {
"encoder": SENetEncoder,
"pretrained_settings": pretrained_settings["se_resnet101"],
"params": {
"out_channels": (3, 64, 256, 512, 1024, 2048),
"block": SEResNetBottleneck,
"layers": [3, 4, 23, 3],
"downsample_kernel_size": 1,
"downsample_padding": 0,
"dropout_p": None,
"groups": 1,
"inplanes": 64,
"input_3x3": False,
"num_classes": 1000,
"reduction": 16,
},
},
"se_resnet152": {
"encoder": SENetEncoder,
"pretrained_settings": pretrained_settings["se_resnet152"],
"params": {
"out_channels": (3, 64, 256, 512, 1024, 2048),
"block": SEResNetBottleneck,
"layers": [3, 8, 36, 3],
"downsample_kernel_size": 1,
"downsample_padding": 0,
"dropout_p": None,
"groups": 1,
"inplanes": 64,
"input_3x3": False,
"num_classes": 1000,
"reduction": 16,
},
},
"se_resnext50_32x4d": {
"encoder": SENetEncoder,
"pretrained_settings": pretrained_settings["se_resnext50_32x4d"],
"params": {
"out_channels": (3, 64, 256, 512, 1024, 2048),
"block": SEResNeXtBottleneck,
"layers": [3, 4, 6, 3],
"downsample_kernel_size": 1,
"downsample_padding": 0,
"dropout_p": None,
"groups": 32,
"inplanes": 64,
"input_3x3": False,
"num_classes": 1000,
"reduction": 16,
},
},
"se_resnext101_32x4d": {
"encoder": SENetEncoder,
"pretrained_settings": pretrained_settings["se_resnext101_32x4d"],
"params": {
"out_channels": (3, 64, 256, 512, 1024, 2048),
"block": SEResNeXtBottleneck,
"layers": [3, 4, 23, 3],
"downsample_kernel_size": 1,
"downsample_padding": 0,
"dropout_p": None,
"groups": 32,
"inplanes": 64,
"input_3x3": False,
"num_classes": 1000,
"reduction": 16,
},
},
}