ghlee94's picture
Init
2a13495
import timm
import numpy as np
import torch.nn as nn
from ._base import EncoderMixin
def _make_divisible(x, divisible_by=8):
return int(np.ceil(x * 1.0 / divisible_by) * divisible_by)
class MobileNetV3Encoder(nn.Module, EncoderMixin):
def __init__(self, model_name, width_mult, depth=5, **kwargs):
super().__init__()
if "large" not in model_name and "small" not in model_name:
raise ValueError("MobileNetV3 wrong model name {}".format(model_name))
self._mode = "small" if "small" in model_name else "large"
self._depth = depth
self._out_channels = self._get_channels(self._mode, width_mult)
self._in_channels = 3
# minimal models replace hardswish with relu
self.model = timm.create_model(
model_name=model_name,
scriptable=True, # torch.jit scriptable
exportable=True, # onnx export
features_only=True,
)
def _get_channels(self, mode, width_mult):
if mode == "small":
channels = [16, 16, 24, 48, 576]
else:
channels = [16, 24, 40, 112, 960]
channels = [3,] + [_make_divisible(x * width_mult) for x in channels]
return tuple(channels)
def get_stages(self):
if self._mode == "small":
return [
nn.Identity(),
nn.Sequential(self.model.conv_stem, self.model.bn1, self.model.act1,),
self.model.blocks[0],
self.model.blocks[1],
self.model.blocks[2:4],
self.model.blocks[4:],
]
elif self._mode == "large":
return [
nn.Identity(),
nn.Sequential(
self.model.conv_stem,
self.model.bn1,
self.model.act1,
self.model.blocks[0],
),
self.model.blocks[1],
self.model.blocks[2],
self.model.blocks[3:5],
self.model.blocks[5:],
]
else:
ValueError(
"MobileNetV3 mode should be small or large, got {}".format(self._mode)
)
def forward(self, x):
stages = self.get_stages()
features = []
for i in range(self._depth + 1):
x = stages[i](x)
features.append(x)
return features
def load_state_dict(self, state_dict, **kwargs):
state_dict.pop("conv_head.weight", None)
state_dict.pop("conv_head.bias", None)
state_dict.pop("classifier.weight", None)
state_dict.pop("classifier.bias", None)
self.model.load_state_dict(state_dict, **kwargs)
mobilenetv3_weights = {
"tf_mobilenetv3_large_075": {
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth" # noqa
},
"tf_mobilenetv3_large_100": {
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth" # noqa
},
"tf_mobilenetv3_large_minimal_100": {
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth" # noqa
},
"tf_mobilenetv3_small_075": {
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth" # noqa
},
"tf_mobilenetv3_small_100": {
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth" # noqa
},
"tf_mobilenetv3_small_minimal_100": {
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth" # noqa
},
}
pretrained_settings = {}
for model_name, sources in mobilenetv3_weights.items():
pretrained_settings[model_name] = {}
for source_name, source_url in sources.items():
pretrained_settings[model_name][source_name] = {
"url": source_url,
"input_range": [0, 1],
"mean": [0.485, 0.456, 0.406],
"std": [0.229, 0.224, 0.225],
"input_space": "RGB",
}
timm_mobilenetv3_encoders = {
"timm-mobilenetv3_large_075": {
"encoder": MobileNetV3Encoder,
"pretrained_settings": pretrained_settings["tf_mobilenetv3_large_075"],
"params": {"model_name": "tf_mobilenetv3_large_075", "width_mult": 0.75},
},
"timm-mobilenetv3_large_100": {
"encoder": MobileNetV3Encoder,
"pretrained_settings": pretrained_settings["tf_mobilenetv3_large_100"],
"params": {"model_name": "tf_mobilenetv3_large_100", "width_mult": 1.0},
},
"timm-mobilenetv3_large_minimal_100": {
"encoder": MobileNetV3Encoder,
"pretrained_settings": pretrained_settings["tf_mobilenetv3_large_minimal_100"],
"params": {"model_name": "tf_mobilenetv3_large_minimal_100", "width_mult": 1.0},
},
"timm-mobilenetv3_small_075": {
"encoder": MobileNetV3Encoder,
"pretrained_settings": pretrained_settings["tf_mobilenetv3_small_075"],
"params": {"model_name": "tf_mobilenetv3_small_075", "width_mult": 0.75},
},
"timm-mobilenetv3_small_100": {
"encoder": MobileNetV3Encoder,
"pretrained_settings": pretrained_settings["tf_mobilenetv3_small_100"],
"params": {"model_name": "tf_mobilenetv3_small_100", "width_mult": 1.0},
},
"timm-mobilenetv3_small_minimal_100": {
"encoder": MobileNetV3Encoder,
"pretrained_settings": pretrained_settings["tf_mobilenetv3_small_minimal_100"],
"params": {"model_name": "tf_mobilenetv3_small_minimal_100", "width_mult": 1.0},
},
}