|
import timm |
|
import numpy as np |
|
import torch.nn as nn |
|
|
|
from ._base import EncoderMixin |
|
|
|
|
|
def _make_divisible(x, divisible_by=8): |
|
return int(np.ceil(x * 1.0 / divisible_by) * divisible_by) |
|
|
|
|
|
class MobileNetV3Encoder(nn.Module, EncoderMixin): |
|
def __init__(self, model_name, width_mult, depth=5, **kwargs): |
|
super().__init__() |
|
if "large" not in model_name and "small" not in model_name: |
|
raise ValueError("MobileNetV3 wrong model name {}".format(model_name)) |
|
|
|
self._mode = "small" if "small" in model_name else "large" |
|
self._depth = depth |
|
self._out_channels = self._get_channels(self._mode, width_mult) |
|
self._in_channels = 3 |
|
|
|
|
|
self.model = timm.create_model( |
|
model_name=model_name, |
|
scriptable=True, |
|
exportable=True, |
|
features_only=True, |
|
) |
|
|
|
def _get_channels(self, mode, width_mult): |
|
if mode == "small": |
|
channels = [16, 16, 24, 48, 576] |
|
else: |
|
channels = [16, 24, 40, 112, 960] |
|
channels = [3,] + [_make_divisible(x * width_mult) for x in channels] |
|
return tuple(channels) |
|
|
|
def get_stages(self): |
|
if self._mode == "small": |
|
return [ |
|
nn.Identity(), |
|
nn.Sequential(self.model.conv_stem, self.model.bn1, self.model.act1,), |
|
self.model.blocks[0], |
|
self.model.blocks[1], |
|
self.model.blocks[2:4], |
|
self.model.blocks[4:], |
|
] |
|
elif self._mode == "large": |
|
return [ |
|
nn.Identity(), |
|
nn.Sequential( |
|
self.model.conv_stem, |
|
self.model.bn1, |
|
self.model.act1, |
|
self.model.blocks[0], |
|
), |
|
self.model.blocks[1], |
|
self.model.blocks[2], |
|
self.model.blocks[3:5], |
|
self.model.blocks[5:], |
|
] |
|
else: |
|
ValueError( |
|
"MobileNetV3 mode should be small or large, got {}".format(self._mode) |
|
) |
|
|
|
def forward(self, x): |
|
stages = self.get_stages() |
|
|
|
features = [] |
|
for i in range(self._depth + 1): |
|
x = stages[i](x) |
|
features.append(x) |
|
|
|
return features |
|
|
|
def load_state_dict(self, state_dict, **kwargs): |
|
state_dict.pop("conv_head.weight", None) |
|
state_dict.pop("conv_head.bias", None) |
|
state_dict.pop("classifier.weight", None) |
|
state_dict.pop("classifier.bias", None) |
|
self.model.load_state_dict(state_dict, **kwargs) |
|
|
|
|
|
mobilenetv3_weights = { |
|
"tf_mobilenetv3_large_075": { |
|
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth" |
|
}, |
|
"tf_mobilenetv3_large_100": { |
|
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth" |
|
}, |
|
"tf_mobilenetv3_large_minimal_100": { |
|
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth" |
|
}, |
|
"tf_mobilenetv3_small_075": { |
|
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth" |
|
}, |
|
"tf_mobilenetv3_small_100": { |
|
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth" |
|
}, |
|
"tf_mobilenetv3_small_minimal_100": { |
|
"imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth" |
|
}, |
|
} |
|
|
|
pretrained_settings = {} |
|
for model_name, sources in mobilenetv3_weights.items(): |
|
pretrained_settings[model_name] = {} |
|
for source_name, source_url in sources.items(): |
|
pretrained_settings[model_name][source_name] = { |
|
"url": source_url, |
|
"input_range": [0, 1], |
|
"mean": [0.485, 0.456, 0.406], |
|
"std": [0.229, 0.224, 0.225], |
|
"input_space": "RGB", |
|
} |
|
|
|
|
|
timm_mobilenetv3_encoders = { |
|
"timm-mobilenetv3_large_075": { |
|
"encoder": MobileNetV3Encoder, |
|
"pretrained_settings": pretrained_settings["tf_mobilenetv3_large_075"], |
|
"params": {"model_name": "tf_mobilenetv3_large_075", "width_mult": 0.75}, |
|
}, |
|
"timm-mobilenetv3_large_100": { |
|
"encoder": MobileNetV3Encoder, |
|
"pretrained_settings": pretrained_settings["tf_mobilenetv3_large_100"], |
|
"params": {"model_name": "tf_mobilenetv3_large_100", "width_mult": 1.0}, |
|
}, |
|
"timm-mobilenetv3_large_minimal_100": { |
|
"encoder": MobileNetV3Encoder, |
|
"pretrained_settings": pretrained_settings["tf_mobilenetv3_large_minimal_100"], |
|
"params": {"model_name": "tf_mobilenetv3_large_minimal_100", "width_mult": 1.0}, |
|
}, |
|
"timm-mobilenetv3_small_075": { |
|
"encoder": MobileNetV3Encoder, |
|
"pretrained_settings": pretrained_settings["tf_mobilenetv3_small_075"], |
|
"params": {"model_name": "tf_mobilenetv3_small_075", "width_mult": 0.75}, |
|
}, |
|
"timm-mobilenetv3_small_100": { |
|
"encoder": MobileNetV3Encoder, |
|
"pretrained_settings": pretrained_settings["tf_mobilenetv3_small_100"], |
|
"params": {"model_name": "tf_mobilenetv3_small_100", "width_mult": 1.0}, |
|
}, |
|
"timm-mobilenetv3_small_minimal_100": { |
|
"encoder": MobileNetV3Encoder, |
|
"pretrained_settings": pretrained_settings["tf_mobilenetv3_small_minimal_100"], |
|
"params": {"model_name": "tf_mobilenetv3_small_minimal_100", "width_mult": 1.0}, |
|
}, |
|
} |
|
|