|
"""Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin` |
|
|
|
Attributes: |
|
|
|
_out_channels (list of int): specify number of channels for each encoder feature tensor |
|
_depth (int): specify number of stages in decoder (in other words number of downsampling operations) |
|
_in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3) |
|
|
|
Methods: |
|
|
|
forward(self, x: torch.Tensor) |
|
produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of |
|
shape NCHW (features should be sorted in descending order according to spatial resolution, starting |
|
with resolution same as input `x` tensor). |
|
|
|
Input: `x` with shape (1, 3, 64, 64) |
|
Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes |
|
[(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8), |
|
(1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ) |
|
|
|
also should support number of features according to specified depth, e.g. if depth = 5, |
|
number of feature tensors = 6 (one with same resolution as input and 5 downsampled), |
|
depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). |
|
""" |
|
|
|
import torch.nn as nn |
|
from torchvision.models.vgg import VGG |
|
from torchvision.models.vgg import make_layers |
|
from pretrainedmodels.models.torchvision_models import pretrained_settings |
|
|
|
from ._base import EncoderMixin |
|
|
|
|
|
cfg = { |
|
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], |
|
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], |
|
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], |
|
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], |
|
} |
|
|
|
|
|
|
|
class VGGEncoder(VGG, EncoderMixin): |
|
def __init__(self, out_channels, config, batch_norm=False, depth=5, **kwargs): |
|
super().__init__(make_layers(config, batch_norm=batch_norm), **kwargs) |
|
self._out_channels = out_channels |
|
self._depth = depth |
|
self._in_channels = 3 |
|
del self.classifier |
|
|
|
def make_dilated(self, *args, **kwargs): |
|
raise ValueError( |
|
"'VGG' models do not support dilated mode due to Max Pooling" |
|
" operations for downsampling!" |
|
) |
|
|
|
def get_stages(self): |
|
stages = [] |
|
stage_modules = [] |
|
for module in self.features: |
|
if isinstance(module, nn.MaxPool2d): |
|
stages.append(nn.Sequential(*stage_modules)) |
|
stage_modules = [] |
|
stage_modules.append(module) |
|
stages.append(nn.Sequential(*stage_modules)) |
|
return stages |
|
|
|
def forward(self, x): |
|
stages = self.get_stages() |
|
|
|
features = [] |
|
for i in range(self._depth + 1): |
|
x = stages[i](x) |
|
features.append(x) |
|
|
|
return features |
|
|
|
def load_state_dict(self, state_dict, **kwargs): |
|
keys = list(state_dict.keys()) |
|
for k in keys: |
|
if k.startswith("classifier"): |
|
state_dict.pop(k, None) |
|
super().load_state_dict(state_dict, **kwargs) |
|
|
|
|
|
vgg_encoders = { |
|
"vgg11": { |
|
"encoder": VGGEncoder, |
|
"pretrained_settings": pretrained_settings["vgg11"], |
|
"params": { |
|
"out_channels": (64, 128, 256, 512, 512, 512), |
|
"config": cfg["A"], |
|
"batch_norm": False, |
|
}, |
|
}, |
|
"vgg11_bn": { |
|
"encoder": VGGEncoder, |
|
"pretrained_settings": pretrained_settings["vgg11_bn"], |
|
"params": { |
|
"out_channels": (64, 128, 256, 512, 512, 512), |
|
"config": cfg["A"], |
|
"batch_norm": True, |
|
}, |
|
}, |
|
"vgg13": { |
|
"encoder": VGGEncoder, |
|
"pretrained_settings": pretrained_settings["vgg13"], |
|
"params": { |
|
"out_channels": (64, 128, 256, 512, 512, 512), |
|
"config": cfg["B"], |
|
"batch_norm": False, |
|
}, |
|
}, |
|
"vgg13_bn": { |
|
"encoder": VGGEncoder, |
|
"pretrained_settings": pretrained_settings["vgg13_bn"], |
|
"params": { |
|
"out_channels": (64, 128, 256, 512, 512, 512), |
|
"config": cfg["B"], |
|
"batch_norm": True, |
|
}, |
|
}, |
|
"vgg16": { |
|
"encoder": VGGEncoder, |
|
"pretrained_settings": pretrained_settings["vgg16"], |
|
"params": { |
|
"out_channels": (64, 128, 256, 512, 512, 512), |
|
"config": cfg["D"], |
|
"batch_norm": False, |
|
}, |
|
}, |
|
"vgg16_bn": { |
|
"encoder": VGGEncoder, |
|
"pretrained_settings": pretrained_settings["vgg16_bn"], |
|
"params": { |
|
"out_channels": (64, 128, 256, 512, 512, 512), |
|
"config": cfg["D"], |
|
"batch_norm": True, |
|
}, |
|
}, |
|
"vgg19": { |
|
"encoder": VGGEncoder, |
|
"pretrained_settings": pretrained_settings["vgg19"], |
|
"params": { |
|
"out_channels": (64, 128, 256, 512, 512, 512), |
|
"config": cfg["E"], |
|
"batch_norm": False, |
|
}, |
|
}, |
|
"vgg19_bn": { |
|
"encoder": VGGEncoder, |
|
"pretrained_settings": pretrained_settings["vgg19_bn"], |
|
"params": { |
|
"out_channels": (64, 128, 256, 512, 512, 512), |
|
"config": cfg["E"], |
|
"batch_norm": True, |
|
}, |
|
}, |
|
} |
|
|