ghlee94 commited on
Commit
587d678
·
1 Parent(s): 048af86

Debug app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -1
app.py CHANGED
@@ -37,6 +37,7 @@ from skimage.util.dtype import dtype_range
37
  from skimage._shared.utils import _supported_float_type
38
  from scipy.ndimage import find_objects, binary_fill_holes
39
 
 
40
 
41
  ########################### Data Loading Modules #########################################################
42
  DTYPE_RANGE = dtype_range.copy()
@@ -1102,6 +1103,22 @@ def compute_masks(
1102
 
1103
  return mask, p
1104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105
  def predict(img):
1106
  # Dataset parameters
1107
  ### for huggingface space
@@ -1239,7 +1256,7 @@ def predict(img):
1239
  tif.imwrite(file_path, pred_mask, compression="zlib")
1240
  print(np.max(pred_mask))
1241
  # return img_data, seg_rgb, join(os.getcwd(), 'segmentation.tiff')
1242
- return origin_img, pred_mask, file_path
1243
 
1244
  demo = gr.Interface(
1245
  predict,
 
37
  from skimage._shared.utils import _supported_float_type
38
  from scipy.ndimage import find_objects, binary_fill_holes
39
 
40
+ import random
41
 
42
  ########################### Data Loading Modules #########################################################
43
  DTYPE_RANGE = dtype_range.copy()
 
1103
 
1104
  return mask, p
1105
 
1106
+ def visualize_instance_seg_mask(mask):
1107
+ image = np.zeros((mask.shape[0], mask.shape[1], 3))
1108
+ labels = np.unique(mask)
1109
+ label2color = {label: (random.randint(50, 255), random.randint(50, 255), random.randint(50, 255)) for label in labels if label > 0}
1110
+ label2color[0] = (0, 0, 0)
1111
+ for label in labels:
1112
+ image[mask==label, :] = label2color[label]
1113
+ # for i in range(image.shape[0]):
1114
+ # for j in range(image.shape[1]):
1115
+ # if np.max(label2color[mask[i, j]]) > 0:
1116
+ # print('####', np.max(label2color[mask[i, j]]), np.min(label2color[mask[i, j]]))
1117
+ # image[i, j, :] = label2color[mask[i, j]]
1118
+ # image = image / 255
1119
+ image = image.astype(np.uint8)
1120
+ return image
1121
+
1122
  def predict(img):
1123
  # Dataset parameters
1124
  ### for huggingface space
 
1256
  tif.imwrite(file_path, pred_mask, compression="zlib")
1257
  print(np.max(pred_mask))
1258
  # return img_data, seg_rgb, join(os.getcwd(), 'segmentation.tiff')
1259
+ return origin_img, visualize_instance_seg_mask(pred_mask), file_path
1260
 
1261
  demo = gr.Interface(
1262
  predict,