import gradio as gr import torch import torchaudio from torch import nn # Load the saved generator model class Generator(nn.Module): def __init__(self, latent_dim): super(Generator, self).__init__() self.generator = nn.Sequential( nn.Linear(latent_dim, 1024), nn.ReLU(), nn.Linear(1024, 4096), nn.ReLU(), nn.Linear(4096, 8192), nn.Tanh() ) def forward(self, x): return self.generator(x) latent_dim = 100 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") generator = Generator(latent_dim).to(device) generator_model_path = 'generator_model.pkl' generator.load_state_dict(torch.load(generator_model_path, map_location=device)) def generate_kick_drums(): # Define the number of samples you want to generate num_generated_samples = 3 output_files = [] # Generate new kick drum samples generator.eval() with torch.no_grad(): for i in range(num_generated_samples): noise = torch.randn(1, latent_dim).to(device) generated_sample = generator(noise).squeeze().cpu() # Save the generated sample output_filename = f"generated_kick_{i+1}.wav" torchaudio.save(output_filename, generated_sample.unsqueeze(0), 16000) output_files.append(output_filename) return tuple(output_files) # Define Gradio interface def gradio_interface(): generate_button = gr.Interface(fn=generate_kick_drums, inputs=None, outputs=[gr.Audio(type='filepath', label=f"generated_kick_{i}") for i in range(3)], live=True) generate_button.launch(debug=True) # Run the Gradio interface gradio_interface()