File size: 8,252 Bytes
4316c61
 
 
509862d
4316c61
6bafd2d
4316c61
 
 
6284dc0
 
e797135
6bafd2d
 
 
 
 
63d9326
 
 
 
 
 
 
 
 
 
 
 
6bafd2d
 
 
 
 
 
 
 
5a7c5d5
 
 
 
 
 
6bafd2d
5a7c5d5
6bafd2d
5a7c5d5
6bafd2d
5a7c5d5
6bafd2d
5a7c5d5
6bafd2d
5a7c5d5
6bafd2d
 
 
5a7c5d5
 
 
6bafd2d
 
4316c61
 
 
53ff575
81b1a0e
4316c61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d967d62
4316c61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8da09d2
132dae6
1ba1ac4
132dae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ba1ac4
 
 
 
 
 
6b21c48
1ba1ac4
 
 
 
 
 
 
 
1f5deb3
1ba1ac4
5a7c5d5
 
6fc9c48
5a7c5d5
 
 
 
 
 
 
 
6fc9c48
 
 
 
 
 
 
1ba1ac4
 
6bafd2d
132dae6
 
 
 
 
 
 
 
4316c61
132dae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4316c61
3847cbf
 
4316c61
 
132dae6
3847cbf
4316c61
 
 
 
 
 
 
 
3847cbf
6fc9c48
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import cv2
import numpy as np
import torch
import gradio as gr
import spaces
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from PIL import Image, ImageOps
from transformers import AutoModelForImageSegmentation
from torchvision import transforms

class WhiteTheme(Base):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.orange,
        font: fonts.Font | str | tuple[fonts.Font | str, ...] = (
            fonts.GoogleFont("Inter"),
            "ui-sans-serif",
            "system-ui",
            "sans-serif",
        ),
        font_mono: fonts.Font | str | tuple[fonts.Font | str, ...] = (
            fonts.GoogleFont("Inter"),
            "ui-monospace",
            "system-ui",
            "monospace",
        )
    ):
        super().__init__(
            primary_hue=primary_hue,
            font=font,
            font_mono=font_mono,
        )
        
        self.set(
            # Light mode specific colors
            background_fill_primary="*primary_50",
            background_fill_secondary="white",
            border_color_primary="*primary_300",
            
            # General colors that should stay constant
            body_background_fill="white",
            body_background_fill_dark="white",
            block_background_fill="white",
            block_background_fill_dark="white",
            panel_background_fill="white",
            panel_background_fill_dark="white",
            body_text_color="black",
            body_text_color_dark="black",
            block_label_text_color="black",
            block_label_text_color_dark="black",
            block_border_color="white",
            panel_border_color="white",
            input_border_color="lightgray",
            input_background_fill="white",
            input_background_fill_dark="white",
            shadow_drop="none"
        )

torch.set_float32_matmul_precision('high')
torch.jit.script = lambda f: f

device = "cuda" if torch.cuda.is_available() else "cpu"

def refine_foreground(image, mask, r=90):
    if mask.size != image.size:
        mask = mask.resize(image.size)
    image = np.array(image) / 255.0
    mask = np.array(mask) / 255.0
    estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
    image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
    return image_masked

def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
    alpha = alpha[:, :, None]
    F, blur_B = FB_blur_fusion_foreground_estimator(
        image, image, image, alpha, r)
    return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]

def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
    if isinstance(image, Image.Image):
        image = np.array(image) / 255.0
    blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
    blurred_FA = cv2.blur(F * alpha, (r, r))
    blurred_F = blurred_FA / (blurred_alpha + 1e-5)
    blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
    blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
    F = blurred_F + alpha * (image - alpha * blurred_F - (1 - alpha) * blurred_B)
    F = np.clip(F, 0, 1)
    return F, blurred_B

class ImagePreprocessor():
    def __init__(self, resolution=(1024, 1024)) -> None:
        self.transform_image = transforms.Compose([
            transforms.Resize(resolution),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406],
                                 [0.229, 0.224, 0.225]),
        ])

    def proc(self, image: Image.Image) -> torch.Tensor:
        image = self.transform_image(image)
        return image

# Load the model
birefnet = AutoModelForImageSegmentation.from_pretrained(
    'zhengpeng7/BiRefNet-matting', trust_remote_code=True)
birefnet.to(device)
birefnet.eval()

def remove_background_wrapper(image):
    if image is None:
        raise gr.Error("Please upload an image.")
    image_ori = Image.fromarray(image).convert('RGB')
    foreground, background, pred_pil, reverse_mask = remove_background(image_ori)
    return foreground, background, pred_pil, reverse_mask

@spaces.GPU
def remove_background(image_ori):
    original_size = image_ori.size
    image_preprocessor = ImagePreprocessor(resolution=(1024, 1024))
    image_proc = image_preprocessor.proc(image_ori)
    image_proc = image_proc.unsqueeze(0)
    
    with torch.no_grad():
        preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    
    pred_pil = transforms.ToPILImage()(pred)
    pred_pil = pred_pil.resize(original_size, Image.BICUBIC)
    
    reverse_mask = ImageOps.invert(pred_pil)
    
    foreground = image_ori.copy()
    foreground.putalpha(pred_pil)
    
    background = image_ori.copy()
    background.putalpha(reverse_mask)
    
    torch.cuda.empty_cache()
    
    return foreground, background, pred_pil, reverse_mask

# Custom CSS for styling
custom_css = """
.title-container {
    text-align: center;
    padding: 10px 0;
}

#title {
    font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
    font-size: 36px;
    font-weight: bold;
    color: #000000;
    padding: 10px;
    border-radius: 10px;
    display: inline-block;
    background: linear-gradient(
        135deg,
        #e0f7fa, #e8f5e9, #fff9c4, #ffebee,
        #f3e5f5, #e1f5fe, #fff3e0, #e8eaf6
    );
    background-size: 400% 400%;
    animation: gradient-animation 15s ease infinite;
}

@keyframes gradient-animation {
    0% { background-position: 0% 50%; }
    50% { background-position: 100% 50%; }
    100% { background-position: 0% 50%; }
}

#submit-button {
    background: linear-gradient(
        135deg,
        #e0f7fa, #e8f5e9, #fff9c4, #ffebee,
        #f3e5f5, #e1f5fe, #fff3e0, #e8eaf6
    );
    background-size: 400% 400%;
    animation: gradient-animation 15s ease infinite;
    border-radius: 12px;
    color: black;
}

/* Force light mode styles */
:root, :root[data-theme='light'], :root[data-theme='dark'] {
    --body-background-fill: white !important;
    --background-fill-primary: white !important;
    --background-fill-secondary: white !important;
    --block-background-fill: white !important;
    --panel-background-fill: white !important;
    --body-text-color: black !important;
    --block-label-text-color: black !important;
}

/* Additional overrides for dark mode */
@media (prefers-color-scheme: dark) {
    :root {
        color-scheme: light;
    }
}
"""

with gr.Blocks(css=custom_css, theme=WhiteTheme()) as demo:
    gr.HTML('''
        <div class="title-container">
            <div id="title">
                <span>{.</span><span id="typed-text"></span><span>}</span>
            </div>
        </div>
        <script>
            (function() {
                const text = "image";
                const typedTextSpan = document.getElementById("typed-text");
                let charIndex = 0;
                
                function type() {
                    if (charIndex < text.length) {
                        typedTextSpan.textContent += text[charIndex];
                        charIndex++;
                        setTimeout(type, 150);
                    }
                }
                
                setTimeout(type, 150);
            })();
        </script>
    ''')
    
    # Interface setup with input and output
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="numpy", sources=['upload'], label="Upload Image")
            btn = gr.Button("Process Image", elem_id="submit-button")
        
        with gr.Column():
            output_foreground = gr.Image(type="pil", label="Foreground")
            output_background = gr.Image(type="pil", label="Background")
            output_foreground_mask = gr.Image(type="pil", label="Foreground Mask")
            output_background_mask = gr.Image(type="pil", label="Background Mask")

    # Link the button to the processing function
    btn.click(fn=remove_background_wrapper, inputs=image_input, outputs=[
        output_foreground, output_background, output_foreground_mask, output_background_mask])

    demo.launch(debug=True)