Spaces:
Runtime error
Runtime error
File size: 8,252 Bytes
4316c61 509862d 4316c61 6bafd2d 4316c61 6284dc0 e797135 6bafd2d 63d9326 6bafd2d 5a7c5d5 6bafd2d 5a7c5d5 6bafd2d 5a7c5d5 6bafd2d 5a7c5d5 6bafd2d 5a7c5d5 6bafd2d 5a7c5d5 6bafd2d 5a7c5d5 6bafd2d 4316c61 53ff575 81b1a0e 4316c61 d967d62 4316c61 8da09d2 132dae6 1ba1ac4 132dae6 1ba1ac4 6b21c48 1ba1ac4 1f5deb3 1ba1ac4 5a7c5d5 6fc9c48 5a7c5d5 6fc9c48 1ba1ac4 6bafd2d 132dae6 4316c61 132dae6 4316c61 3847cbf 4316c61 132dae6 3847cbf 4316c61 3847cbf 6fc9c48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import os
import cv2
import numpy as np
import torch
import gradio as gr
import spaces
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes
from PIL import Image, ImageOps
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
class WhiteTheme(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.orange,
font: fonts.Font | str | tuple[fonts.Font | str, ...] = (
fonts.GoogleFont("Inter"),
"ui-sans-serif",
"system-ui",
"sans-serif",
),
font_mono: fonts.Font | str | tuple[fonts.Font | str, ...] = (
fonts.GoogleFont("Inter"),
"ui-monospace",
"system-ui",
"monospace",
)
):
super().__init__(
primary_hue=primary_hue,
font=font,
font_mono=font_mono,
)
self.set(
# Light mode specific colors
background_fill_primary="*primary_50",
background_fill_secondary="white",
border_color_primary="*primary_300",
# General colors that should stay constant
body_background_fill="white",
body_background_fill_dark="white",
block_background_fill="white",
block_background_fill_dark="white",
panel_background_fill="white",
panel_background_fill_dark="white",
body_text_color="black",
body_text_color_dark="black",
block_label_text_color="black",
block_label_text_color_dark="black",
block_border_color="white",
panel_border_color="white",
input_border_color="lightgray",
input_background_fill="white",
input_background_fill_dark="white",
shadow_drop="none"
)
torch.set_float32_matmul_precision('high')
torch.jit.script = lambda f: f
device = "cuda" if torch.cuda.is_available() else "cpu"
def refine_foreground(image, mask, r=90):
if mask.size != image.size:
mask = mask.resize(image.size)
image = np.array(image) / 255.0
mask = np.array(mask) / 255.0
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
return image_masked
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
alpha = alpha[:, :, None]
F, blur_B = FB_blur_fusion_foreground_estimator(
image, image, image, alpha, r)
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
if isinstance(image, Image.Image):
image = np.array(image) / 255.0
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
blurred_FA = cv2.blur(F * alpha, (r, r))
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
F = blurred_F + alpha * (image - alpha * blurred_F - (1 - alpha) * blurred_B)
F = np.clip(F, 0, 1)
return F, blurred_B
class ImagePreprocessor():
def __init__(self, resolution=(1024, 1024)) -> None:
self.transform_image = transforms.Compose([
transforms.Resize(resolution),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225]),
])
def proc(self, image: Image.Image) -> torch.Tensor:
image = self.transform_image(image)
return image
# Load the model
birefnet = AutoModelForImageSegmentation.from_pretrained(
'zhengpeng7/BiRefNet-matting', trust_remote_code=True)
birefnet.to(device)
birefnet.eval()
def remove_background_wrapper(image):
if image is None:
raise gr.Error("Please upload an image.")
image_ori = Image.fromarray(image).convert('RGB')
foreground, background, pred_pil, reverse_mask = remove_background(image_ori)
return foreground, background, pred_pil, reverse_mask
@spaces.GPU
def remove_background(image_ori):
original_size = image_ori.size
image_preprocessor = ImagePreprocessor(resolution=(1024, 1024))
image_proc = image_preprocessor.proc(image_ori)
image_proc = image_proc.unsqueeze(0)
with torch.no_grad():
preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
pred_pil = pred_pil.resize(original_size, Image.BICUBIC)
reverse_mask = ImageOps.invert(pred_pil)
foreground = image_ori.copy()
foreground.putalpha(pred_pil)
background = image_ori.copy()
background.putalpha(reverse_mask)
torch.cuda.empty_cache()
return foreground, background, pred_pil, reverse_mask
# Custom CSS for styling
custom_css = """
.title-container {
text-align: center;
padding: 10px 0;
}
#title {
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
font-size: 36px;
font-weight: bold;
color: #000000;
padding: 10px;
border-radius: 10px;
display: inline-block;
background: linear-gradient(
135deg,
#e0f7fa, #e8f5e9, #fff9c4, #ffebee,
#f3e5f5, #e1f5fe, #fff3e0, #e8eaf6
);
background-size: 400% 400%;
animation: gradient-animation 15s ease infinite;
}
@keyframes gradient-animation {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
#submit-button {
background: linear-gradient(
135deg,
#e0f7fa, #e8f5e9, #fff9c4, #ffebee,
#f3e5f5, #e1f5fe, #fff3e0, #e8eaf6
);
background-size: 400% 400%;
animation: gradient-animation 15s ease infinite;
border-radius: 12px;
color: black;
}
/* Force light mode styles */
:root, :root[data-theme='light'], :root[data-theme='dark'] {
--body-background-fill: white !important;
--background-fill-primary: white !important;
--background-fill-secondary: white !important;
--block-background-fill: white !important;
--panel-background-fill: white !important;
--body-text-color: black !important;
--block-label-text-color: black !important;
}
/* Additional overrides for dark mode */
@media (prefers-color-scheme: dark) {
:root {
color-scheme: light;
}
}
"""
with gr.Blocks(css=custom_css, theme=WhiteTheme()) as demo:
gr.HTML('''
<div class="title-container">
<div id="title">
<span>{.</span><span id="typed-text"></span><span>}</span>
</div>
</div>
<script>
(function() {
const text = "image";
const typedTextSpan = document.getElementById("typed-text");
let charIndex = 0;
function type() {
if (charIndex < text.length) {
typedTextSpan.textContent += text[charIndex];
charIndex++;
setTimeout(type, 150);
}
}
setTimeout(type, 150);
})();
</script>
''')
# Interface setup with input and output
with gr.Row():
with gr.Column():
image_input = gr.Image(type="numpy", sources=['upload'], label="Upload Image")
btn = gr.Button("Process Image", elem_id="submit-button")
with gr.Column():
output_foreground = gr.Image(type="pil", label="Foreground")
output_background = gr.Image(type="pil", label="Background")
output_foreground_mask = gr.Image(type="pil", label="Foreground Mask")
output_background_mask = gr.Image(type="pil", label="Background Mask")
# Link the button to the processing function
btn.click(fn=remove_background_wrapper, inputs=image_input, outputs=[
output_foreground, output_background, output_foreground_mask, output_background_mask])
demo.launch(debug=True) |