Spaces:
Runtime error
Runtime error
File size: 4,324 Bytes
81b1a0e 4adc5f9 6284dc0 e797135 6be00d8 e797135 81b1a0e 53ff575 81b1a0e 621c740 81b1a0e 0972107 81b1a0e 1592dab 81b1a0e 6284dc0 81b1a0e 0972107 d967d62 cb61e6f 8da09d2 0972107 fbe03e2 cb61e6f 0972107 cb61e6f 0972107 1acca69 0972107 741bf59 0972107 cb61e6f 1acca69 0972107 8da09d2 0972107 8da09d2 0972107 8da09d2 0972107 8da09d2 1acca69 0972107 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import os
import cv2
import numpy as np
import torch
import gradio as gr
import spaces
from PIL import Image
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
torch.set_float32_matmul_precision('high')
torch.jit.script = lambda f: f
device = "cuda" if torch.cuda.is_available() else "cpu"
def refine_foreground(image, mask, r=90):
if mask.size != image.size:
mask = mask.resize(image.size)
image = np.array(image) / 255.0
mask = np.array(mask) / 255.0
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
return image_masked
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
alpha = alpha[:, :, None]
F, blur_B = FB_blur_fusion_foreground_estimator(
image, image, image, alpha, r)
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
if isinstance(image, Image.Image):
image = np.array(image) / 255.0
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
blurred_FA = cv2.blur(F * alpha, (r, r))
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
F = blurred_F + alpha * \
(image - alpha * blurred_F - (1 - alpha) * blurred_B)
F = np.clip(F, 0, 1)
return F, blurred_B
class ImagePreprocessor():
def __init__(self, resolution=(1024, 1024)) -> None:
self.transform_image = transforms.Compose([
transforms.Resize(resolution),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def proc(self, image: Image.Image) -> torch.Tensor:
image = self.transform_image(image)
return image
birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet-matting', trust_remote_code=True)
birefnet.to(device)
birefnet.eval()
@spaces.GPU
def remove_background(image):
if image is None:
raise gr.Error("Please upload an image.")
image_ori = Image.fromarray(image).convert('RGB')
# Preprocess the image
image_preprocessor = ImagePreprocessor(resolution=(1024, 1024))
image_proc = image_preprocessor.proc(image_ori)
image_proc = image_proc.unsqueeze(0)
# Prediction
with torch.no_grad():
preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu()
pred = preds[0].squeeze()
# Show Results
pred_pil = transforms.ToPILImage()(pred)
image_masked = refine_foreground(image_ori, pred_pil)
image_masked.putalpha(pred_pil.resize(image_ori.size))
torch.cuda.empty_cache()
# Save mask as PNG
mask_path = "mask.png"
pred_pil.save(mask_path)
# Save output as PNG
output_path = "output.png"
image_masked.save(output_path)
return mask_path, output_path
css = """
body {
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol";
}
.gradio-container {
background: linear-gradient(
135deg,
#e0f7fa, #e8f5e9, #fff9c4, #ffebee,
#f3e5f5, #e1f5fe, #fff3e0, #e8eaf6
);
background-size: 400% 400%;
animation: gradient-animation 15s ease infinite;
}
@keyframes gradient-animation {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
.gradio-button {
font-family: inherit;
font-size: 16px;
font-weight: bold;
color: #000000;
background: white;
border: 2px solid black;
border-radius: 10px;
}
.gradio-button:hover {
background: #f0f0f0;
}
"""
iface = gr.Interface(
fn=remove_background,
inputs=gr.Image(type="numpy"),
outputs=[
gr.Image(type="filepath", label="Mask"),
gr.Image(type="filepath", label="Output")
],
title="<div style='font-size: 36px; font-weight: bold;'>{.Remove Background}</div>",
description="Upload an image to remove its background using BiRefNet.",
allow_flagging="never",
css=css
)
if __name__ == "__main__":
iface.launch(debug=True) |