Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import cv2
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
import gradio as gr
|
6 |
-
import spaces
|
7 |
|
8 |
from PIL import Image, ImageOps
|
9 |
from transformers import AutoModelForImageSegmentation
|
@@ -56,18 +56,19 @@ class ImagePreprocessor():
|
|
56 |
image = self.transform_image(image)
|
57 |
return image
|
58 |
|
59 |
-
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
|
|
60 |
birefnet.to(device)
|
61 |
birefnet.eval()
|
62 |
|
63 |
-
@spaces.GPU
|
64 |
def remove_background(image):
|
65 |
if image is None:
|
66 |
raise gr.Error("Please upload an image.")
|
67 |
|
68 |
image_ori = Image.fromarray(image).convert('RGB')
|
69 |
original_size = image_ori.size
|
70 |
-
|
71 |
# Preprocess the image
|
72 |
image_preprocessor = ImagePreprocessor(resolution=(1024, 1024))
|
73 |
image_proc = image_preprocessor.proc(image_ori)
|
@@ -81,10 +82,9 @@ def remove_background(image):
|
|
81 |
# Process Results
|
82 |
pred_pil = transforms.ToPILImage()(pred)
|
83 |
pred_pil = pred_pil.resize(original_size, Image.BICUBIC) # Resize mask to original size
|
84 |
-
|
85 |
-
# Create reverse mask
|
86 |
-
reverse_mask =
|
87 |
-
reverse_mask.paste(ImageOps.invert(pred_pil))
|
88 |
|
89 |
# Create foreground image (object with transparent background)
|
90 |
foreground = image_ori.copy()
|
@@ -96,29 +96,17 @@ def remove_background(image):
|
|
96 |
|
97 |
torch.cuda.empty_cache()
|
98 |
|
99 |
-
#
|
100 |
-
|
101 |
-
pred_pil.save(mask_path)
|
102 |
-
|
103 |
-
reverse_mask_path = "reverse_mask.png"
|
104 |
-
reverse_mask.save(reverse_mask_path)
|
105 |
-
|
106 |
-
foreground_path = "foreground.png"
|
107 |
-
foreground.save(foreground_path)
|
108 |
-
|
109 |
-
background_path = "background.png"
|
110 |
-
background.save(background_path)
|
111 |
-
|
112 |
-
return mask_path, reverse_mask_path, foreground_path, background_path
|
113 |
|
114 |
iface = gr.Interface(
|
115 |
fn=remove_background,
|
116 |
inputs=gr.Image(type="numpy"),
|
117 |
outputs=[
|
118 |
-
gr.Image(type="
|
119 |
-
gr.Image(type="
|
120 |
-
gr.Image(type="
|
121 |
-
gr.Image(type="
|
122 |
],
|
123 |
allow_flagging="never"
|
124 |
)
|
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
import gradio as gr
|
6 |
+
import spaces # Added import for spaces
|
7 |
|
8 |
from PIL import Image, ImageOps
|
9 |
from transformers import AutoModelForImageSegmentation
|
|
|
56 |
image = self.transform_image(image)
|
57 |
return image
|
58 |
|
59 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
60 |
+
'zhengpeng7/BiRefNet-matting', trust_remote_code=True)
|
61 |
birefnet.to(device)
|
62 |
birefnet.eval()
|
63 |
|
64 |
+
@spaces.GPU # Added the @spaces.GPU decorator
|
65 |
def remove_background(image):
|
66 |
if image is None:
|
67 |
raise gr.Error("Please upload an image.")
|
68 |
|
69 |
image_ori = Image.fromarray(image).convert('RGB')
|
70 |
original_size = image_ori.size
|
71 |
+
|
72 |
# Preprocess the image
|
73 |
image_preprocessor = ImagePreprocessor(resolution=(1024, 1024))
|
74 |
image_proc = image_preprocessor.proc(image_ori)
|
|
|
82 |
# Process Results
|
83 |
pred_pil = transforms.ToPILImage()(pred)
|
84 |
pred_pil = pred_pil.resize(original_size, Image.BICUBIC) # Resize mask to original size
|
85 |
+
|
86 |
+
# Create reverse mask (background mask)
|
87 |
+
reverse_mask = ImageOps.invert(pred_pil)
|
|
|
88 |
|
89 |
# Create foreground image (object with transparent background)
|
90 |
foreground = image_ori.copy()
|
|
|
96 |
|
97 |
torch.cuda.empty_cache()
|
98 |
|
99 |
+
# Return images in the specified order
|
100 |
+
return foreground, background, pred_pil, reverse_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
iface = gr.Interface(
|
103 |
fn=remove_background,
|
104 |
inputs=gr.Image(type="numpy"),
|
105 |
outputs=[
|
106 |
+
gr.Image(type="pil", label="Foreground"),
|
107 |
+
gr.Image(type="pil", label="Background"),
|
108 |
+
gr.Image(type="pil", label="Foreground Mask"),
|
109 |
+
gr.Image(type="pil", label="Background Mask")
|
110 |
],
|
111 |
allow_flagging="never"
|
112 |
)
|